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Abstract

We describe a new subdivision scheme for unstructured tetrahedrabsd&revious tetrahderal schemes based on
generalizations of box splines have encoded arbitrary directional reées in their associated subdivision rules
that were not re ected in tetrahderal base mesh. Our method avoidstioise of preferred directions resulting a
scheme that is simple to implement via repeated smoothing. In an extgnuendi, we analyze this tetrahedral
scheme and prove that the scheme generafeseformations everywhere except along edges of the tetrahedral
base mesh. Along edges shared by four or more tetrahedra in the lesde we present strong evidence that the
scheme generates@eformations.

Categories and Subject Descript@scording to ACM CCS) 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction cal (colored) regions of the brain. On the left, the image
has been covered by a uniform base mesh. Subdividing this
guad mesh using bi-cubic subdivision yield@%mesh that
de nes a smooth parameterization of the image. Perturbing
p“l= s the vertices of the base mesh in the region of the cerebel-
lum (dark folds) induces a corresponding deformation of the
If the subdivision procesS is chosen correctly, the limit  ynderlying image. On the right, the image has been cov-
meshp® is guaranteed to be a smooth mesh that approxi- ered by an unstructured quadrilateral mesh. A subset of the
mates the base megf. Using subdivision has become pop-  edges in this mesh have been creased to de ne a network
ular for geometric modeling because the subdivision process of crease curves that partition the base mesh into anatomi-
places no restriction on the topological connectivity of the cal regions. Now, this quadrilateral base mesh is subdivided
base mesh. using Catmull-Clark subdivision to de ne a smooth param-
eterization of the underlying image. Perturbing the vertices

While most work on subdivision has focused on surface . . ;
meshes, we consider the problem of subdividing volumetric of the quadrilateral base mesh induces deformations that are
' restricted to a single anatomical region. Thus, the use of

meshes. Perhaps the most obvious questions to ask concern- X )
ing volumetric subdivision is why bother with building such unstructured mesh allows the construction of deformations
schemes. Typically, volumetric subdivision schemes have with much ner control than those built using tensor product
been proposed as a means to de ne deformations. However, Methods.

the existence of simple schemes for tensor product volumet-

ric meshes such as free-form deformatioB8886 reduces 1.1. Previous work

this question to why subdivision scheme for unstructured
meshes are important.

Given a base mequ, subdivision is a recursive process that
de nes increasingly re ned meshes via a relation of the form

While previous work on subdivision of unstructured volu-

metric meshes has been limited, there are a few papers that
Figurel shows an application of subdivision to the prob- have addressed this problem. MacCracken and V2§

lem of image deformation that illustrates the superiority developed one of the rst volumetric subdivision schemes.

of unstructured methods. In this case, the image being de- This scheme was developed primarily to de ne deforma-

formed is a cross-section of a mouse brain where the pixel tions based on unstructured hexahedral meshes. Unfortu-

intensities represent the cell density in different anatomi- nately, the subdivision rules proposed in the paper were de-
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Figure 1: Close-up of the cerebellum on a cross-section of a mouse brain. Initiaédding in a uniform grid and its deforma-
tion using free-form deformations (left). Subdivision surface that modelsotedaries of the different anatomical regions and
the explicit deformation of those boundaries (right).

veloped in a somewhat ad-hoc manner making any type of  edges shared by four or more tetrahedra, we present strong
proof of smoothness for the scheme very dif cult. Later, Ba- evidence that the resulting deformations afe

jaj et al BSWXO0Z developed different subdivision rules for

hexahedral meshes, which generated deformations that wereThe body of the paper presents the tetrahedral scheme and

provably smooth everywhere except at vertices of the hexa- considers several of its applications with no accompanying
hedral base mesh theoretical analysis. In an extended appendix, we perform

a mathematical analysis of the smoothness of the scheme
Both of these schemes used hexahedra (topological cubes)using a combination of regularity analysis (Réti93) and

as their volumetric elements. Unfortunately, building un- spectral analysis (Levin/LevirL[03]).
structured meshes of hexahedra that conform to specic
boundary shapes can be dif cult. Traditionally, mesh gen- -
eration r)r/1ethorc)js generate unstructured mes{les of tegtrahe-z' A tetrahedral subdivision scheme
dra instead. The most relevant piece of previous work is a Our proposed scheme is a combination of linear subdivision
subdivision scheme for unstructured tetrahedral meshes pro-followed by a smoothing pass. This structure is similar to
posed by Chang et aCMQO0Z. In that paper, the authors  that of the several schemes proposed for subdividing surface
build subdivision rules for unstructured tetrahedral meshes meshes BSWX02, Sta01 ZS01. As in the bivariate case,
by generalizing the subdivision rules for a particular class of implementing our scheme is quite simple and does not re-
trivariate box-splines. quire neighbor nding or mesh traversal algorithms. To il-
lustrate the ease of implementation, we provide pseudocode

While this approach was successfully  used by for the smoothing pass at the end of this section.

Loop [Loo87 to generalize the subdivision rules for
the C? three-direction quartic box splines to unstructured
triangular meshes, using trivariate box splines to generate / /
subdivision rules for unstructured tetrahedral grids is much -—
more dif cult. The drawback of the subdivision rules —> ' —>
proposed in Chang et al's is that these rules encode a / ( (
preferred direction in each tetrahedron of the base mesh.

(Section2.1 will elaborate on this point.) This directional

preference makes implementing the Chang et al scheme Figure 2: Splitting a tetrahedra generates an octahedron in
tricky and proving any results concerning the smoothness of the middle. Splitting the octahedron into tetrahedra requires
the scheme extremely dif cult. the choice of a diagonal.

Contributions

In contrast to Chang et al, we develop volumetric subdivi-

sion rules for unstructured tetrahedral meshes that avoid the 2.1. Linear subdivision

assumption of any preferred direction in the base mesh. This To perform linear subdivision on a mesh of tetrahedra, we

construction also generalizes the bivariate case and leads tod lit inale tetrahed hich is th ,I' d

a trivariate scheme with two important properties: €ne a spiit on a single tetrahedron, which 1S then applie
to all tetrahedra in the mesh. Given a tetrahedron, we insert

The scheme is simple to implement in terms of linear sub- new vertices at the midpoints of each edge and connect the
division and smoothing. vertices together to form four new tetrahedra at the corners
The deformations induced by the scheme are prO\GBIy of the original tetrahedron. Chopping these four children off
everywhere except along edges of the base mesh. Alongthe corners of the parent tetrahedron leaves an octahedron
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vertices of the octahedron together. Next, we connect the
vertices together to form six new octahedra (corresponding
to the six vertices of the original octahedron) and eight new
tetrahedra (corresponding to the eight faces of the original
octahedron). The entire re nement process is illustrated in
gure 3.

While Chang et al's tetrahedral scheme is similar to ours
in that it does not topologically split the octahedron, their
scheme generates subdivision rules that encode a preferred
diagonal along the octahedron. This preferred diagonal is a
natural result of their use of trivariate box splines in gener-
ating their subdivision rules. Due to the existence of a pre-
ferred diagonal, Chang et al's scheme is guaranteed to be
smooth only on the interior of each tetrahedron in the base
mesh. In particular, Chang et al make no attempt to analyze
the smoothness of their scheme across the face shared by two

. . o . . tetrahedra in the base mesh.
Figure 3: Linear subdivision splits a tetrahedron into four

tetrahedra and an octahedron (top). An octahedron is split ~ The need for such face/face analysis is somewhat surpris-

into six octahedra and eight tetrahedra (bottom). ing and was not even recognized by Chang et al. This failure

is understandable since a subdivided triangular mesh is uni-

form along the interior of edges in the base mesh. Similarly,

a subdivided hexahedral mesh is uniform along the interior

of quad faces of the base mesh. Unfortunately, a subdivided,

unstructured tetrahedral meshnist uniform across the in-

terior of triangular faces of the base mesh. Thus, substantial
At this point, we are faced with a dilemma. We can ei- care must be used in designing the subdivision rules of the

ther split the octahedron into four tetrahedra by choosing scheme if one hopes to construct a scheme that is provably

a diagonal for the octahedron (see guP® or leave the smooth across these faces. In the appendix, we use the joint

octahedron alone and develop an analog of linear subdivi- spectral radius techniques of Levin/Levin to prove that our

sion for octahedra. At rst glance, splitting the octahedron scheme i€€? across the interior of these faces.

along a diagonal might seem like a simplifying choice. In

reality, this choice leads to substantial complications during

any attempt to analyze the smoothness of the associated sub-

division scheme. This choice of diagonal cause the result-

ing tetrahedral mesh to contain a preferred direction asso-

ciated with the choice of diagonal. To generate a provably

smooth subdivision scheme, this diagonal must be inherited

during linear subdivision. More crucially, each tetrahedron

in the base mesh must be assigned such a diagonal. Any type

of smoothness analysis that considers the interface between

two tetrahedra in the base mesh must enumerate all possible

choices for this diagonal.

(see gure3top). (Note that performing this corner chop-
ping on a triangle yields a triangle making linear subdivision
for triangular meshes much easier.)

Given that our goal is to create a scheme that contains no
preferred direction and is simple enough to prove smooth-
ness results about, we do not choose a diagonal for the mid-
dle octahedron and split a tetrahedron into four new tetrahe- Figure 4: Centroid masks for tetrahedra/octahedra. The
dra and an octahedron (see guBg Since we have intro- highlighted vertex is the vertex being repositioned by
duced an octahedron into the volumetric mesh, our subdivi- smoothing.
sion scheme is not simply a tetrahedral subdivision scheme,
but a tetrahedral/octahedral subdivision scheme. Therefore,
we must de ne a re nement rule for octahedra as well.

To re ne an octahedron, we insert vertices at the mid- 2.2. Smoothing

points of each edge on the octahedron and at the centroid After linear subdivision, we perform a smoothing pass over
of the octahedron, which is formed by averaging all of the the tetrahedral/octahedral mesh to reposition each vertex.
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/finput: T is list of cells, p is an array of vertex positions We can also incorporate sharp features where we alter the

/l acellis a list of indices into p continuity of the volume to b€ ea§||y using the method
newP 0 described by Hoppe et aHpD 94]. Figure8 shows a cylin-
val 0 drical volume with a crease surface de ned by Loop subdi-
for eachT; vision and crease edges, which form B-splines, around the
if ( Ti is a tetrahedron ) top and bottom of the cylinder.
1 17 17 17 1
16 48 48 48
71 17 W
newAT+=F 15 15 % ¥ L) 3. Application to deformations
8 a8 16 48 . . . . o
17 17 17 1 As alluded to in the introduction, volumetric subdivision
else// must be gn octahedrion ° L schemes nd their main use in generating smooth volumetric
O deformations. Given a volunmg, a volumetric deformation
1 03 1 1 71 1 f maps pointxin Rto new pointsf(x) in f(R). The defor-
v 132 - mation f is CX continuous if each coordinate function com-
newHT]+= 2 12 8 12 12 24 PIT] prising f can be expressed locally as the graph of a function
L 5 5 3 5 4 with k continuous derivatives.
i 7 1 1 3 1
12 24 12 12 8 12
i 1 7 1 1 3
12 12 24 12 12 8
val[TiJ++

for eachnewR
newP /= valli]
return mesh of T; newRy

Figure 5: Smoothing pass for tet/oct subdivision

Figure 6: Subdivision de nes a map f between points in a
rest con guration to a deformed con guration.

For each vertex in the mesh after linear subdivision, we nd
each volumetric cell (tetrahedron or octahedron) containing
that vertex. Then we compute the weighted centroids shown
in gure 4 for each cell. For tetrahedra, this centroid com-
putesl—Gl of the vertex being repositioned aéé of the edge
adjacent vertices. To generate the centroid for octahedra we
take 3 of the vertex being repositioneg), of the edge ad-
jacent vertices an(f71 of the cell-adjacent vertex. We then
average all of these centroids together to obtain the new lo-
cation of the repositioned vertex. Despite the fact that there
is a negative weight in the centroid mask for tetrahedra, the
subdivision rules produced by combining linear subdivision f)= & aip™ 1)
and smoothing use only convex combinations. i

To construct volumetric deformations, we use the basic
technique described in MacCracken and Jay9€. Given
abase mesbo, we de neRto be the volume spanned by the
limit mesh pl .Ifthe mesm1 forms a one-to-one covering
of R, we can express each poiin R as a unique point on
the limit meshp® of the form&;a;p® where thep® are
vertices of the base mes;t? (see gure6). Perturbing the
vertices of the base mesh to form a new mpshl€ nes an
associated deformatiohof the form

In the attached appendix, we show that the deformations in-
duced by our tetrahedral subdivision scheme are provably
c? everywhere except along edges of the base mesh. Along
edges shared by four or more tetrahedra, we hypothesize the
scheme i€! and provide strong evidence to support this hy-
pothesis.

Since this smoothing pass is described only in terms
of centroid masks, it yields a very simple implementation.
Given an unstructured tetrahedra/octahedra mesh, we rst
apply linear subdivision. This operation can be implemented
on a cell by cell basis. For smoothing, we initialize the ver-
tices of a mesh with the same topology as the input to be
identically 0. Then, for each cell in the mesh, we compute Figure7 shows an application of our method to the prob-
the centroid mask of guré in all possible orientations and  lem of deforming a dinosaur skeleton. First, we embed the
add that quantity to the vertex to be repositioned for that skeleton in a tetrahedral base mqﬁa Next, we perform
orientation. Finally, we divide each vertex by its valence several rounds of subdivision on the base mesh to form a
(the number of cells containing that vertex). Figarélus- re ned mesh pk. Each new vertex inserted in the tetrahe-
trates pseudocode for the smoothing pass. This descriptiondral/octahedral mesbk is represented as an convex combi-
requires no neighbor nding in the mesh or external data nation of the vertices of the base mep?] Then, for each
structures to traverse the mesh and is quite easy to imple- vertexx of the skeleton, we nd the tetrahedra or octahedra
ment. in the re ned meskpk that contains that vertex and compute
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Figure 7: Surface deformation via tetrahedral subdivision. Initial shape shown @eff)three deformed poses (right).

the barycentric coordinates of that vertex with respect to its References
enclosing cell. Since all vertices of the cell are convex com- [BSWX02] BAJAJ C., SCHAEFER S., WARREN J., XU G.: A

binations of vertices opo, the skeleton vertex can then be
represented as a convex combination of the verticqs‘)of
Perturbing the vertices of the base mesh forms a new base
mesh pe that de nes a deformatiori(x) of the vertices of

the skeleton as given in equatitn

[CMQ02]

Figure 7 illustrates several different deformations of the
dinosaur model. Since we use an unstructured grid of tetra-

hedra, we can encase the surfaces to be deformed in far fewelfHDD 94]

volumetric elements than would be required by free-form
deformations using structured grids. Therefore, this sparse
embedding yields deformations that require relatively few
tetrahedral vertices and can be performed in real-time.

Figure8 depicts another example in which a 3D test pat-
tern is deformed using our scheme. The base npﬁs'ls a
tetrahedral mesh approximating the shape of a cylinder. To
generate the sharp circular edges along the top and bottom
of the cylinder, we have creased the appropriate edges of [Loo87]
the cylinder. The left part of the gure shows the tetrahedral

[LLO3]

mesh in wireframe. The middle and right portions of the g- [MJ96]
ure show the 3D test pattern before and after perturbation of

the base mesh.

4. Conclusions [Reigs]

We have presented a simple subdivision scheme for unstruc-

tured tetrahedral mesh. This scheme consists of linear subdi-

vision followed a smoothing pass. Implementing the pass of [SP86]
the scheme requires only a standard topological mesh repre-
sentation without the need for any auxiliary adjacency infor-

mation. The key to the simplicity of the scheme is the sym-

metric treatment of the octahedron generated by chopping

off the corners of a tetrahedron. As we show in the appendix, [Sta01]
this choice makes smoothness analysis possible.
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Figure 8: Initial set of tetrahedra, subdivided surface, deformed surface andnterior. Parameter lines are smooth after
deformation.

[zS01] ZORIN D., SCHRODERP.: A unied framework for translation, linearly subdividing the mebft yields a dilated
primal/dual subdivision schemes. G@omputer Aided mesh of the form} M.

Geometric Desigif2001), vol. 18, pp. 429-4542 . ) . .
For this scale-invariant mesh, we now consider the hat

functionn(x) centered at the origin that is generated by lin-
Appendix A: Smoothness analysis ear subdivision with no smoothing. Based on the splitting
rules for linear subdivisiom(x) satis es a scaling relation

Given a tetrahedral base mep% we consider the smooth-
of the form

ness of a deformatiofi(x) induced by a perturbation of the
base mesh. In particular, our smoothness analysis considers _ 13 N 3 i

four cases: n(x) = n(2x) + > Je‘ln(ZX dj)+ & J_§ln(2x g) (@
xlies in the interior of a tetrahedron of the base mesh,  \yhere the vectordj andg; de ne integer offsets in the uni-
x lies on the interior of a face shared by two tetrahedra of 51 meshM. These offsets correspond to verticesM

the base mesh, that lie in the one-ring of the origin (see the left portion of
x lies on the interior of an edges shared by several tetra- gure 9) and correspond to

hedra of the base mesh,
x lies at a vertex of the base mesh. d
g

where Permutations yields a set without duplicatidicgn-
tains 12 elements whilghas 6). The right portion of guré®

To begin our analysis, we rst consider the structure of shows the 3D subdivision mask formed by the coef cients of
the uniform mesh generated by linearly subdividing a sin- equatior2.

gle tetrahedron repeatedly. If this base tetrahedron has ver-
tices of the form(1; 0; 0;0); (0; 1;0; 0); (0; 0; 1;0); (0; 0; 0; 1),

k rounds of linear subdivision generate a uniform 3D mesh
whose vertices have barycentric coordinates of the form
Elp(io;il;iz;ig) where theij are non-negative integers that
sum to &. (The embedding of the base tetrahedron in the
planexg+ X1 + Xo + x3 = 1 allows the coordinates to be
treated symmetrically and avoids the use of any preferred
direction in our construction.)

Permutationél; 1;0;0)
Permutationél;1; 1, 1)

Interior of a base tetrahedron

Relaxing the restriction that the coordinates of the mesh
vertices are non-negative yields a sequence of in nite uni-
form meshesvi¥ associated with the subdivision process.
Unfortunately, the scaling relation between consecutive
meshesviK and M** 1 is subtle due to the use of barycen-
tric coordinates. However, if we translate the base nmé8h
to interpolate the origin, the resulting mekh lies on the
planexg + X1 + X0+ x3 = 0 and has vertices of the form We next consider the effect of the smoothing pass on
(ipsi1;in;iz) where theij are integers whose sum is 0. After  the mesh formed by linear subdivision. If we apply the

Figure 9: The subdivision mask for the linear subdivision on
the uniform grid M.
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use the joint spectral radius test originally developed by
Levin/Levin [LLO3] to analyze the smoothness of trian-
gle/quad subdivision along the interface between triangles
and quads. Note that the mesh structure in their triangle/quad
analysis is similar to the mesh structureMdf: two uniform
meshes separated by planar interface.

If Sis the subdivision matrix associated wiity, we rst
compute the eigenvalués and eigenvectors; of the form
Sz = | jzj. The Levin/LevinC? smoothness test involves
checking three conditions:

First, check whether the eigenvaluleg (ordered in de-
Figure 10: Two face-adjacent tetrahedra subdivided and scending value) have the form
opened at the shared face. Subdivision generates tet/tet and 111111111
oct/oct pairs along that face. i i i I A 3)

Note that the subdominant eigenvect(zs z»; z3) repro-
duce the gridM;. As a result, the eigenfunctions associ-
ated with these eigenvectors de ne a characteristic map
that produces a one-to-one covering of space.

Next, we check whether the eigenfunctions associated

weighted-centroid averaging rules for this pass to the one-
ring of the origin, the smoothing mask that results is also
supported over the one-ring of origin and is exa@lyf the
subdivision mask for linear subdivision. (The agreement is
no coincidence as we chose the weights used in the smooth-
ing pass to ensure this agreement.)

plotted over the characteristic map.
Finally, the joint spectral radius of the subdivision scheme

o ) must be less thag.
Now, the subdivision mask for the composite scheme

formed by linear subdivision and smoothing is sim%ly)f The rst test is simple to check and involves only extrac-

the discrete convolution of the mask of gugewith itself. tion pf the eigenvalues ar_u_j eigenvectors of the sgbdivisior_w
As shown in [Var94, the discrete convolution of two subdi- ~ Matrix. The second condition can be checked using quasi-
vision masks yields a new subdivision mask whose associ- INtérpolants as in Levin/LevinLL03]. However, the joint
ated basis function is the continuous convolution of the ba- SPectral radius test requires more work.

sis functions associated with each original mask. In our case,  Figure 10 (left) shows a portion ofl; with the interface

the convolution of the hat function(x) with itself is the ba- between a tet/tet and oct/oct pair highlighted. This pair forms
sis function for our composite scheme. Since the continuous a patch on the face between two tetrahedra. To perform the
convolution of tweC? functions (x) with itself) is alwaysa  joint spectral radius test, we must construct 4 subdivision
C? function, our scheme genera@% deformations on uni- matricesS that map the support of the patch on guté
form meshes. (left) to the support of each of the four sub-quads formed
after one round of subdivision ( gur&0 right). Each sub-
guad is a scaled and translated version of the original quad
and yields a square subdivision mat§x

While the smoothness of our subdivision scheme on the in-
terior of a base tetrahedron follows by appealing to convolu-
tion, we must verify smoothness of our scheme in the other

Faces of the base mesh

After building theS, we then construct a diagonalizing
matrix W usingS; such that

cases using spectral methods suitable for analysis of non- w lgw = L C
uniform schemes. This difference is due to the fact that the U €1
mesh formed by applying linear subdivision to an unstruc- w lsw = g G i61

tured tetrahedral mesh is uniform only on the interior of base 0 Y

tetrahedra and is no longer unlform across the faces of the whereL is a diagonal matrix whose entries are the speci-
bas_e me_sh. In particular, the uniform mégkgenerated on ed eigenvalues in equatio andg; is an upper triangular
the interior of a base tetrahedron has the property that every matrix that shares the same diagonal entriels &' can be
face in the grid is shared by a tet/oct pair. On the other hand, constructed using the eigenvectorsircorresponding to the

the in nite meshM; generated by applying linear subdivi- eigenvalues it and the null space of those vectors.
sion to two face-adjacent tetrahedra consists of two copies of

Mc joined along a triangular interface formed by tet/tet pairs
and oct/oct pairs. (see gurk0.)

To prove that our scheme &2 on the meshM;, we
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Figure 11: Characteristic map for edges of valen@&
through10. Figure 12: Characteristic maps for several low valence con-
gurations of tetrahedra around a vertex.

wheree 2 1;::;4g. If r < 1 for somek, then the scheme

is C? over that extraordinary complex. For our four subdivi- along the edge. For our scheme, these matrices have eigen-
sion matrices we computerdg] = 0:238 and conclude that  values of the form 4 ;I 1; %;;;; and satisfy the joint spec-
our scheme i€? along the face shared by two tetrahedra. tral radius test for valences 10n> 3. Forn= 3, we could
not nd a k that satis ed the joint spectral radius condition.
Edges of the base mesh While this failure does not mean the schem&®s we vi-
sually inspected the smoothness of the volumes using the

To analyze the smoothness of our scheme along edges ofgp agt patterns shown in gurgand the deformations pro-
the base mesh is more dif cult than the face case since the §,,ced are not smooth. For other valences 19> 3. the 3D

structure of the in nite mesMe form by subdividingn tetra-
hedra sharing a common edge depends.dn practice, we
know of no analysis technique capable of establishing the
smoothness of our scheme along this edge. However, we Vertices of the base mesh

hyp_othesi_ze that a combinatio_n of the analysis methods of ag tor the edge case, we know of no analysis method for
Levin/Levin [LLO3] and Reif Rei9q can be used to analyze 1, 4\ing that our scheme is smoothness at a vertex of the base
the smooth of volumetric scheme in con gurations of this  ash "However, we again hypothesis that the conditions for

test patterns undergoes visually smooth deformation.

type. the edge case suf ce to establish smoothness at a vertex. In
Given the subdivision matri$ for the meshMe, we hy- the vertex case, the third test is redundant since there is only
pothesize that the schemeds if: a single matrixS; = Sused in computing the joint spectral

. radius.
Its eigenvalues are of the form>Ll 1 1, [3>:::

The characteristic map formed by the eigenvectors  Similar to the edge case, we only consider arbitrary pack-

7);2; 73 is regular and injective. ing of tetrahedra around a base vertex. Unfortunately, the
Finally, the joint-spectral radius of the scheme simple parameterization by valence used in analyzing sur-
(r M(Y1;Y2)) must be less thah. face subdivision schemes is unavailable for volume schemes

and no block circulant structures can be exploited to analyze

the smoothness of the scheme. Therefore, we enumerated

through all con gurations of tetrahedra around a vertex for

valences 4 through 10 and tested random con gurations of
We have checked these three criteria for our scheme. tetrahedra for higher valences. Each con guration of tetra-

Since the mesMe is parameterized by the number of tetra-  hedra passed the eigenvalue and characteristic map test. Fig-

hedra sharing the edge of the base mesh, the subdivision ma-ure12 shows several characteristic maps produced for differ-

trices S will contain a block circulant structure that makes entcon gurations and number of tetrahedra around a vertex.

extraction of the eigenvectors;z;zz as a symbolic func-

tion of n possible. However, it is unclear how the block cir-

culant structure interacts with the joint spectral radius test.

Therefore, we have numerically computed the characteristic

map for edge valences 3 through 10 and visually inspected

their shape (see gurél).

The core of our hypothesis is that the second condition al-
lows the smoothness analysis to be reduced to the functional
case used in the joint spectral radius test.

To apply the joint spectral radius test, we construct sub-
division matricesS;; S, corresponding to one of two shifts
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