1.1(2).8
In [Ko01] p.48, the homogeneous pair (g,h) with index 1.1(2).8 is defined as
 ![ShowAd[ad = Table2ad[bas = {e_1, u_1, u_2, u_3, u_4}, ( {{0, u_3, 0, -u_1, 0}, {-u_3, 0, 0, 0, 0}, {0, 0, 0, 0, u_2}, {u_1, 0, 0, 0, 0}, {0, 0, -u_2, 0, 0}} )], 4]](../HTMLFiles/index_82.gif) 
|  |  |  |  |  | |
|  | 0 |  | 0 |  | 0 | 
|  |  | 0 | 0 | 0 | 0 | 
|  | 0 | 0 | 0 | 0 |  | 
|  |  | 0 | 0 | 0 | 0 | 
|  | 0 | 0 |  | 0 | 0 | 
Any ρ-invariant scalarproduct B is of the form
 ![Clear[B] ;](../HTMLFiles/index_99.gif) 
 ![B = LSolve[ΗadInv[ad, B = Τℊ★[g, 4], 0], B] ;](../HTMLFiles/index_100.gif) 
 ![MF[B = B/.Vars[B] → {b, c, a, d, e, f}]](../HTMLFiles/index_101.gif) 
  
The tensor ν:g×g→m is determined by
 ![Showν[ΗΡν[ad, B], bas]](../HTMLFiles/index_103.gif) 
|  |  |  |  |  | |
|  | 0 |  | 0 |  | 0 | 
|  |  | 0 | 0 | 0 | 0 | 
|  | 0 | 0 |  | 0 |  | 
|  |  | 0 | 0 | 0 | 0 | 
|  | 0 | 0 |  | 0 |  | 
The Levi-Civita connection Λ:g→gl(m) is determined by
 ![ShowΛ[ΗΡΛ[ad, B]]](../HTMLFiles/index_122.gif) 
|  |  | 
|  | zero…4×4 | 
|  |  | 
|  | zero…4×4 | 
|  |  | 
The non-zero evaluations of the Riemannian-curvature tensor R:m×m→gl(m) are determined by
 ![Showℛ[ℛ = ΗΡℛ[ad, B]]](../HTMLFiles/index_131.gif) 
|  |  | 
The Ricci-curvature Ric:m×m→R is determined by
 ![MF[Ric = ΜRic[ℛ]]](../HTMLFiles/index_134.gif) 
  
We demand Ric=0. Thus, b=0.
 ![sol = Union[Solve[Ric≡0]]](../HTMLFiles/index_136.gif) 
  
  
But then, the Riemannian curvature tensor vanishes also.
 ![Showℛ[ℛ/.sol[[1]]]](../HTMLFiles/index_139.gif) 
  
Note, this result is independent of the signature of B.
| Created by Mathematica (August 15, 2006) |  |