Classification 1 of 1

In the previous section, we have derived the geometric tensors, in particular Ric=0, for the following scalar-product, to which we now apply the Lie-Algebra automorphisms:

Τα[( {{0, 0, b_7, -b_6}, {0, 0, b_6, b_7}, {b_7, b_6, b_8, b_9}, {-b_6, b_7, b_9, b_10}} ), 0, EXP[λ M[[1]]]]//MF

Τα[( {{0, 0, b_7, -b_6}, {0, 0, b_6, b_7}, {b_7, b_6, b_8, b_9}, {-b_6, b_7, b_9, b_10}} )/.{b_6→0}, 0, EXP[λ M[[3]]]]//MF

( {{0, 0, b_7, 0}, {0, 0, 0, b_7}, {b_7, 0, b_8, 2 λ b_7 + b_9}, {0, b_7, 2 λ b_7 + b_9, b_10}} )

Τα[( {{0, 0, b_7, -b_6}, {0, 0, b_6, b_7}, {b_7, b_6, b_8, b_9}, {-b_6, b_7, b_9, b_10}} )/.{b_6→0, b_9→0}, 0, EXP[λ M[[4]]]]//MF

( {{0, 0, b_7, 0}, {0, 0, 0, b_7}, {b_7, 0, -2 λ b_7 + b_8, 0}, {0, b_7, 0, 2 λ b_7 + b_10}} )

Τα[( {{0, 0, b_7, -b_6}, {0, 0, b_6, b_7}, {b_7, b_6, b_8, b_9}, {-b_6, b_7, b_9, b_10}} )/.{b_6→0, b_9→0, b_8→0}, 0, EXP[λ M[[2]]]]//MF

( {{0, 0, ^λ b_7, 0}, {0, 0, 0, ^λ b_7}, {^λ b_7, 0, 0, 0}, {0, ^λ b_7, 0, b_10}} )

We state the non-isomorphic pairs:

ShowSol[A12, ( {{0, 0, b_7, -b_6}, {0, 0, b_6, b_7}, {b_7, b_6, b_8, b_9}, {-b_6, b_7, b_9, b_10}} ), {b_6→0, b_9→0, b_8→0, b_7→1}]

We consider the Lie-algebra with commutator<br /> ad =  ( {{0, 0, e_1, -e_2}, {0, 0, e_2, e_1}, {-e_1, -e_2, 0, 0}, {e_2, -e_1, 0, 0}} )

and the scalar product of the form ℬ =  ( {{0, 0, 1, 0}, {0, 0, 0, 1}, {1, 0, 0, 0}, {0, 1, 0, b_10}} )

with determinant |ℬ| = 1 .

Then, the non-zero evaluations of the Riemannian curvature tensor are determined by<br /> {{RIE_ (3, 4, j)^i, ( {{0, 0, 0, -b_10}, {0, 0, b_10, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}} )}}

The Ricci curvature tensor is zero…4×4

ShowSol[A12, ( {{0, 0, b_7, -b_6}, {0, 0, b_6, b_7}, {b_7, b_6, b_8, b_9}, {-b_6, b_7, b_9, b_10}} ), {b_6→0, b_9→0, b_8→0, b_7→ -1}]

We consider the Lie-algebra with commutator<br /> ad =  ( {{0, 0, e_1, -e_2}, {0, 0, e_2, e_1}, {-e_1, -e_2, 0, 0}, {e_2, -e_1, 0, 0}} )

and the scalar product of the form ℬ =  ( {{0, 0, -1, 0}, {0, 0, 0, -1}, {-1, 0, 0, 0}, {0, -1, 0, b_10}} )

with determinant |ℬ| = 1 .

Then, the non-zero evaluations of the Riemannian curvature tensor are determined by<br /> {{RIE_ (3, 4, j)^i, ( {{0, 0, 0, b_10}, {0, 0, -b_10, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}} )}}

The Ricci curvature tensor is zero…4×4


Created by Mathematica  (September 15, 2007) Valid XHTML 1.1!