A4,8

ShowSol[A08, ( {{0, b_2, b_3, b_4}, {b_2, b_5, b_6, b_7}, {b_3, b_6, b_8, b_9}, {b_4, b_7, b_9, b_10}} ), {b_2→0, b_3→0, b_4→ -2 b_5^(1/2) b_8^(1/2)}]

We consider the Lie-algebra with commutator<br /> ad =  ( {{0, 0, 0, 0}, {0, 0, e_1, e_2}, {0, -e_1, 0, -e_3}, {0, -e_2, e_3, 0}} )

and the scalar product of the form ℬ =  ( {{0, 0, 0, -2 b_5^(1/2) b_8^(1/2)}, {0, b_5, b_6, b_7}, {0, b_6, b_8, b_9}, {-2 b_5^(1/2) b_8^(1/2), b_7, b_9, b_10}} )

with determinant |ℬ| = 4 b_5 b_6^2 b_8 - 4 b_5^2 b_8^2 .

The Ricci curvature tensor is zero…4×4

ShowSol[A08, ( {{0, b_2, b_3, b_4}, {b_2, b_5, b_6, b_7}, {b_3, b_6, b_8, b_9}, {b_4, b_7, b_9, b_10}} ), {b_2→0, b_3→0, b_4→2 b_5^(1/2) b_8^(1/2)}]

We consider the Lie-algebra with commutator<br /> ad =  ( {{0, 0, 0, 0}, {0, 0, e_1, e_2}, {0, -e_1, 0, -e_3}, {0, -e_2, e_3, 0}} )

and the scalar product of the form ℬ =  ( {{0, 0, 0, 2 b_5^(1/2) b_8^(1/2)}, {0, b_5, b_6, b_7}, {0, b_6, b_8, b_9}, {2 b_5^(1/2) b_8^(1/2), b_7, b_9, b_10}} )

with determinant |ℬ| = 4 b_5 b_6^2 b_8 - 4 b_5^2 b_8^2 .

The Ricci curvature tensor is zero…4×4


Created by Mathematica  (September 15, 2007) Valid XHTML 1.1!