All real 3-dimensional Lie groups

The following list was taken from the paper "Invariants of real low dimension Lie algebras" [Patera et al.].

AppendTo[ad3, Table2ad[({{0, e_1, -2e_2}, {0, 0, e_3}, {0, 0, 0}})]] ;

AppendTo[ad3, Table2ad[({{0, e_3, -e_2}, {0, 0, e_1}, {0, 0, 0}})]] ;

The following list summarizes the commutator tables. The coefficient a ranges over special intervals. First 0<a<1, secondly 0<a.

ShowAd/@ad3

The first 7 Lie algebras in the list are semi-direct products determined by a certain derivation δ. The groups are all diffeomorphic to ^3. We list the actions  G×GG in coordinates.

Print["#", #1, {x , x , x }◦{ y , y , y } = , adδ[ad3[[#1]]][[1]]] &/@Range[7] ;                            1   2   3           1   2   3

#1 {x , x , x }◦{ y , y , y } =  {x_1 + y_1 - x_3 y_2, x_2 + y_2, x_3 + y_3}      1   2   3           1   2   3

#2 {x , x , x }◦{ y , y , y } =  {x_1 + ^(-x_3) (y_1 - x_3 y_2), x_2 + ^(-x_3) y_2, x_3 + y_3}      1   2   3           1   2   3

#3 {x , x , x }◦{ y , y , y } =  {x_1 + ^(-x_3) y_1, x_2 + ^(-x_3) y_2, x_3 + y_3}      1   2   3           1   2   3

#4 {x , x , x }◦{ y , y , y } =  {x_1 + ^(-x_3) y_1, x_2 + ^x_3 y_2, x_3 + y_3}      1   2   3           1   2   3

#5 {x , x , x }◦{ y , y , y } =  {x_1 + ^(-x_3) y_1, x_2 + ^(-a x_3) y_2, x_3 + y_3}      1   2   3           1   2   3

#6 {x , x , x }◦{ y , y , y } =  {x_1 + Cos[x_3] y_1 - Sin[x_3] y_2, x_2 + Sin[x_3] y_1 + Cos[x_3] y_2, x_3 + y_3}      1   2   3           1   2   3

The computer determines the group action by exponentiating δ. The derivation δ is part of the commutator table.

ShowMat[EXP[#1[[{1, 2}, {1, 2}, 3]] x_3] &/@ad3[[Range[7]]]]

Lets show all figures that come with Lie algebra #7.

debug = True ;

Show[G = Setup @@ adδ[ad3[[7]]]]

debug = False ;

jnf   ( {{- x_3 + a x_3, 0}, {0,  x_3 + a x_3}} )

   - exp   ( {{^(a x_3) Cos[x_3], ^(a x_3) Sin[x_3]}, {-^(a x_3) Sin[x_3], ^(a x_3) Cos[x_3]}} )

descent:  {3, 0, 0}

7 recursive calls

{{x_1 + y_1, x_2 + y_2, x_3 + y_3}, {0, 0, 0}, {-x_1, -x_2, -x_3}}

act  {x_1 + ^(-a x_3) (Cos[x_3] y_1 - Sin[x_3] y_2), x_2 + ^(-a x_3) (Sin[x_3] y_1 + Cos[x_3] y_2), x_3 + y_3}

one  {0, 0, 0}

inv  {-^(a x_3) (Cos[x_3] x_1 + Sin[x_3] x_2), ^(a x_3) (Sin[x_3] x_1 - Cos[x_3] x_2), -x_3}

 dL=d  (g◦x)      x            x→e, g→x                          -  Ad=d  (g◦x◦g  )      x                      x→e, g→x
( {{^(-a x_3) Cos[x_3], -^(-a x_3) Sin[x_3], 0}, {^(-a x_3) Sin[x_3], ^(-a x_3) Cos[x_3], 0}, {0, 0, 1}} ) ( {{^(-a x_3) Cos[x_3], -^(-a x_3) Sin[x_3], a x_1 + x_2}, {^(-a x_3) Sin[x_3], ^(-a x_3) Cos[x_3], -x_1 + a x_2}, {0, 0, 1}} )
^(-2 a x_3) ^(-2 a x_3)

The last two algebras are simple. Lie algebra #8 is SL_2R and is treated in the introduction. Lie algebra #9 is SO_3R and treated in a separate section. So far, we have ommitted the 3-dimensional abelian group. Lets state a non trivial action ^3×^3^3 as follows

debug = True ;

Show[3a = Setup[{x_1 + y_1 + λ x_3 y_2 + λ x_2 y_3, x_2 + y_2, x_3 + y_3}]]

debug = False ;

eqs: y_1 == -x_1 + 2 λ x_2 x_3&&y_2 == -x_2&&y_3 == -x_3   {{-x_1 + 2 λ x_2 x_3, -x_2, -x_3}}

act  {x_1 + y_1 + λ x_3 y_2 + λ x_2 y_3, x_2 + y_2, x_3 + y_3}

one  {0, 0, 0}

inv  {-x_1 + 2 λ x_2 x_3, -x_2, -x_3}

 dL=d  (g◦x)      x            x→e, g→x                          -  Ad=d  (g◦x◦g  )      x                      x→e, g→x
( {{1, λ x_3, λ x_2}, {0, 1, 0}, {0, 0, 1}} ) ( {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} )
1 1

 ad=d  (Ad)            zero…3×3  κ=zero…3×3      x     x→e


Created by Mathematica  (September 30, 2006) Valid XHTML 1.1!