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Introduction

A homogeneous space is the coset manifold G/H, where G is a Lie group, and H is a closed Lie
subgroup of G. The canonic mappings related to a homogeneous space are the projection, and
the left-action. The differential of the left-action extends tensors of special form to invariant
tensor fields on the manifold G/H. For instance, an invariant metric on G/H originates from a
single scalar product B.

A homogeneous triple associated to the homogeneous space G/H with invariant metric is
(g,h, B), where g is the Lie algebra of G, h C g is the subalgebra induced by the subgroup H,
and B is the scalar product on a vector space complement m with g = f & m induced by the
metric.

For a homogeneous space with invariant metric, geometric notions such as the Levi-Civita
connection, and the curvature can be derived at a single point of G/H in terms of the homo-
geneous triple. The curvature tensor obtained this way translates to the invariant curvature
tensor field on the semi-Riemannian manifold G/H. Locally, the homogeneous triple uniquely

determines the corresponding semi-Riemannian homogeneous space.

In this thesis, we are interested in homogeneous triples that relate to homogeneous spaces

with the following geometric properties:

The invariant metric is Lorentzian.
The Riemannian curvature is non-zero. (0.1)

The space is Ricci-flat.

Metrics of index 1 are the core in relativity theory. From the geometric viewpoint, Riemannian-
flat homogeneous spaces are not particularly interesting. A Ricci-flat homogeneous space is

naturally an Einstein manifold.

In [CW70], M. Cahen and N. Wallach classify the symmetric triples of geometry (0.1). In
[FMO5], J. Figueroa-O’Farrill et al. construct further examples of such homogeneous triples. To
the best of our knowledge, Lie groups with left-invariant metric and geometry (0.1) have not

been explicitly mentioned in the literature.

A homogeneous triple is the combination of a homogeneous pair (g,h) with an invariant
scalar product B on a vector space complement m. In [Ko95], B. Komrakov gives a computer
generated classification of 4-dimensional homogeneous pairs with dimbh > 1. We assume that
his classification is correct. Then, any 4-dimensional homogeneous triple with dimh > 1 is the
combination of a homogeneous pair in Komrakov’s list with an invariant scalar product. In
order to determine all 4-dimensional homogeneous triples with dimbh > 1 and geometry (0.1),
we simply investigate the geometry of all possible combinations.

Although Komrakov’s list of pairwise non-isomorphic homogeneous pairs extends over more

than 80 pages, this strategy is doable. In [Ko01], B. Komrakov provides all invariant Lorentzian



scalar products to each of the 4-dimensional homogeneous pairs. The efforts are worthwhile:
We detect homogeneous triples, which are of the desired geometry and have not been covered

by previous work.

The results lead us to introduce a new class of Lorentzian homogeneous triples HJ,. To
the best of our knowledge, H!", includes all homogeneous triples with geometry (0.1) that are
mentioned in the literature. In addition, the class covers all homogeneous triples of this particular
geometry we could detect.

Our construction is an essential extension to previous work. The elements in H]’, do not
align in a vector space, but the parameters are subject to non-linear equations. Furthermore,
HY, corresponds to Lie groups with left-invariant Lorentzian metric, which are Ricci-flat, but

not Riemannian-flat for a certain choice of parameters.

We structure the thesis in the following way. In the introductory chapter, we cover the math-
ematical concepts that are relevant to our work. Our emphasis is on the geometric properties
of a homogeneous space with invariant metric that can be derived in terms of an associated
homogeneous triple.

In the second chapter, we give a concise overview on previous work that was useful to us.
For instance, the classification of low-dimensional semi-Riemannian homogeneous spaces by B.
Doubrov and B. Komrakov is an excellent reference to get acquainted with the subject. However,
to several related publications we point later on.

In Chapter 3, we process the computer generated list of 4-dimensional homogeneous pairs
with dim h > 1 stated in [Ko01]. We argue that 10 homogeneous pairs in Komrakov’s list extend
to homogeneous triples of geometry (0.1). Assuming that Komrakov’s classification is correct,
we focus on the common structure of such triples.

In Chapter 4, we define the homogeneous triples of type Hj,. We explicitly motivate the
design, and derive the Riemannian curvature, and the Ricci tensor of the triples in H],. No-
tions such as Riemannian-, and Ricci-flatness reduce to non-linear equations in the parameters
associated to a triple in H},.

According to a general result on semi-Riemannian manifolds, any homogeneous triple with
geometry (0.1) is of dimension > 4. In the last chapter, we discuss the properties of all 4-
dimensional homogeneous triples that originate from our construction H],. This includes the
case, where dimfh = 0. Subsequently, we confirm a small part of the classification of low-
dimensional homogeneous triples in [DK95], which is originally stated without proof. Our efforts
culminate in the (new) classification of all 4-dimensional homogeneous triples with dimf > 1,

and desired geometry.



Chapter 1

Propaedeutic

This chapter neither substitutes excellent literature on semi-Riemannian geometry such as
[ON83], [Bo86], and [Bu85], nor appealing books on Lie theory and homogeneous spaces such as
[HN91], and [Ar03]. Nevertheless, we briefly review the mathematical concepts that are relevant
to our work.

Our notation does not deviate from what is commonly used in the literature. The formulas

we state serve as a reference. Most of the examples have applications later on.

1.1 Lorentzian scalar products

Let V' be a n-dimensional vector space. A scalar product is a symmetric non-degenerated bilinear
form (,) : V x V — R. Two vectors v,w € V are orthogonal if (v,w) = 0. A set of vectors
{é1,...,en} with (&,€é;) € £6;; forms an orthonormal basis of V. The index of a scalar
product (,) is the largest integer that is the dimension of a subspace W C V on which (,)
is negative definite, i.e. (wy,ws2) <0 for all wy,we € W.

To (,) : V xV — R we associate a matrix B relative to a basis of V = (ej,...,e,) so
that (u,v) = v7.B.u for all u,v € V. B is symmetric and det B # 0, [ON83] p.47. The scalar

products we are mostly dealing with in this thesis are of index 1, called Lorentzian'. In that

case, we usually pick a basis of V' = (e, ..., e,) so that the matrix associated to (,) is of the
form
0 0 1 1 0 O
B=L,=10 I,» 0|, where I,:=1] 0 0
1 0 0 0 0 1

is the identity matrix. The scalar product (,) is negative definite on W = (e; — e,), but not on

any 2-dimensional subspace.

Example 1.1. Let a,b,c¢,d € R and a,b # 0. The scalar product on V = (e, ..., e4) defined
by the matrix

0 0 0 a 2—bd 0 —ac ab

0 a 00 o 1 1 0 ab 0 0
B = with inverse B~ = —7

0 0 b ¢ azb —ac 0 a®> 0

a 0 ¢ d ab 0 0 0

! Hendrik Antoon Lorentz, * 18. Jul 1853 in Arnhem, t 4. Feb 1928 in Haarlem



Figure 1.1 : For a Lorentzian scalar product with associated matrix B, the set {x € V : 27 .B.x =
0} defines a cone. We plot the sets {z € R? : 27 Lo.x = 22129 = 0}, and {x € R : 2T . L3.2 =
27123 + 23 = 0}.

has index 1 for a,b > 0 positive, and index 3 for a,b < 0 negative. This becomes evident when

we display B with respect to the basis V = <ozl-_1.el, cee oai_l.en> for matrices «; as
oq ole.B.oq Qasg a3T.B.ozg
1 2—bd -1 bd—c?
= 0 0 £ 0001 L 0 0 Fgm 0 0 0 1
1 1
0 Ta 0 0 01 0 0 0 T 0 0 0O -1 0 O
1 —c 1 —c
0 0 7 Vb 0 0 1 0 0 0 7 Tab 0 0 -1 0
1 1

0 0 0 Ta 1 0 0 O 0 0 0 e 1 0 0 O
The determinant of B is |B| = —a®b. The remaining combinations b < 0 < a, and a < 0 < b,
lead to B of index 2. O
Remark 1.2. Let n > 1. The equation a;fF.LnH.ai = L,42 holds for any

A0 0 1 00 1 9" —nTn/2 1 0 0

0 I, O 0 Q@ 0 0 I, —n —n I, 0O

0 0 X! 0 0 1 0 0 1 —nTm/2 ot 1

where A € R*, Q € R™" with QT.Q = Q.Q” = I,,, and n € R™. In other words, a Lorentzian

scalar product is stable under these types of vector space transformations. <&

Let B be a symmetric matrix with det B # 0. Then B, and B~! define two scalar products

of the same index on V. A fact, easy to prove in matrix notation.



Lemma 1.3. Consider a vector space V of dimension n > 2 and a Lorentzian scalar product on
V with associated matrix B. Let a skew symmetric matrix 0 € R™*™ define a linear mapping
Q:V — V. The matrix product —Q7.B=1.Q: V — V maps all vectors to zero iff Q = 0.

Proof. In order to prove “=", we assume {2 # 0. Since {2 is skew symmetric, the image of 2 con-
tains a 2-dimensional subspace of V, i.e. dimim ) > 2. Because B corresponds to a Lorentzian
scalar product, B~! defines a scalar product of index 1 as well. Suppose —Q7.B~1.Q = 0, but
then the set {z € V : 27.B~1.2 = 0} contains a 2-dimensional vector space — a contradiction to
B! being of index 1. O

1.2 Semi-Riemannian manifolds

In this thesis, manifolds M are differentiable manifolds of finite dimension. Functions and vector
fields on manifolds are smooth. F(M) denotes the set of real values functions f : M — R on
the manifold M. X(M) denotes the set of vector fields on M. In this section, all notions and
formulas are with respect to a single manifold M, so we abbreviate these sets to §, and X.

Remarkably, for two vector fields U,V € X there exists a unique third W € X, which
satisfies Wf = U(Vf) — V(Uf) for all (smooth) functions f € §, [Bo86] p.152. The wvector
field commutator is defined as [U, V]x := W, or simply [U, V].

A linear connection D : X x X — X with DyU := D(U,V) is a function that is R-linear in

the first slot, and tensor-like in the second, i.e.
Dy(U+W)=DyU+ DyW, and DpU=fDyU forallUV,WeX, feg3.
Additionally, D satisfies the product rule
Dy (fU)=(VAHU+ fDyU forall U,V € X, f € §.

The value of Dy U € X at each point £ € M defines the vector rate of change of U in the V,
direction.

Please consult [ON83] pp.28 for the definitions of integral curves, and the (local) flow induced
by a vector field U € X. A vector field is complete if each of its maximal integral curves is defined

on R. Prominent examples of manifolds are Lie groups, and homogeneous spaces.

A semi-Riemannian® manifold (M,g) is a manifold M together with a symmetric non-
degenerated (0, 2)-tensor field g on M. g is the metric on M, which evokes all geometric notions
such as isometry, geodesics, and curvature. Non-degeneracy of g means that, when restricted
to a point x € M, the metric defines a scalar product g, : T.M x T, M — R on the tangent
(vector) space T, M of M in x. g, has constant index for all z € M, which we make the indez of
the metric g. A metric of index 0 is called Riemannian, a metric of index 1 is called Lorentzian.
While on any manifold a Riemannian metric exists, we find the following statement in [ON83]
p-149.

Theorem 1.4. For a smooth manifold M the following are equivalent: (1) There exists a
Lorentzian metric on M. (2) There is a non-vanishing vector field on M. (3) Either M is

non-compact, or M is compact and has Euler number x (M) = 0.

2 Georg Friedrich Bernhard Riemann, * 17. September 1826 in Breselenz, t 20. Juli 1866 in Selasca



A mapping o : M — M is an isometry of M if the following diagram commutes

gz T:M x T,M — R
| da, | daly 11d  forallz € M.
Jazx : ToeM X ToeM — R

The term da|, abbreviates the differential dya(y)|y=z, and az = a(z).
For two vector fields U,V € X it is convenient to write (U,V) := ¢g(U,V). U and V are
orthogonal if (U, V) = 0. A vector field W € X is Killing® if the flow induced by W is an

isometry for all stages of the flow, equivalently
WU, V) =(W,U],V)+ (U, [W,V]) forall UV € X. (1.1)

On a semi-Riemannian manifold (M, g), there exists the unique Levi-Civita* linear connec-
tion V : X x X — X with the additional properties

VoV =VyU =[U,V], and WU, V)= DwUV)+ U VyV) forallUV, W eX.
(1.2)
Combining the three relations in (1.1), (1.2), we yield for a Killing vector field W € X

(VuW, V) +(U,VyW) =0 forall UV € X. (1.3)
The distinguished linear connection V is characterized by the Koszul® formula

for all U, V,W € X. If these vector fields are moreover Killing, we make use of (1.1) to simplify

the Koszul formula to
2(VyU,W) = ([V,U,W) + (U, [V,W]) + ([U, W], V) + (W, [U, V]) = (W, V], U)
— (V. W, U]) = (V. [U,W]) + (U, [W, V]) + (W, [V, U]) (1.4)
= — (U, V], W) = (U, [W, V]) = (W, U], V) .

The Theorema Egregium by F. GauB® states that the GauB-curvature of a surface depends
solely on the first fundamental form, i.e. the metric. B. Riemann was inspired by this result
and worked towards a generalization of curvature in higher dimensions.

The Riemannian curvature is the (1,3)-tensor field R : X3 — X defined by

RyyW = R(U,V,W) = Vg W — VuVyW + VyVgW  forall U,V,W € X.  (L.5)

The following identities are immediate consequences of the Levi-Civita connection, and the

Koszul formula. The intrinsic symmetries of R are

RyyvWH+RyyW =0, RyyW+RywU+RwuyV =0, (RyyW,X)+(RyyvX,W)=0, (1.6)

3 Wilhelm Killing, * 10. May 1847 Burbach, t 11. Feb 1923 Miinster
4 Tullio Levi-Civita, * 29. Mar 1873 in Padua, t 29. Dec 1941 in Rom
5 Jean-Louis Koszul, * 3. Jan 1921 in Strasbourg

6 Johann Carl Friedrich Gau}, * 30. Apr 1777 in Braunschweig, T 23. Feb 1855 in Géttingen



for all U, V,W, X € X, [Sa97] p.34. Combining two of the symmetries, we obtain
RyyW = RywV — RywU for all U,V,W € X. (1.7)

According to [Be80] p.26, we have RywV = Vv, vU — ViyVyU for all VIV € X and any
Killing vector field U € X. Assume additionally V' is Killing, then (1.7) becomes

RavW = vavU —VwVyU — VVWUV +VwVyV

(1.8)
= vavU — VVWUV + Vw[U, V].
The Ricci” curvature is the (0,2)-tensor field Ric : X x X — § defined by
Ric(U,V) = tr (W — Ry V) forall UV € X. (1.9)

According to [Sa97] p.44, Ric is symmetric, i.e. Ric(U,V) = Ric(V,U) for all U,V € X.
A semi-Riemannian manifold is Ricci-flat if Ric = 0. An Einstein® manifold carries a metric

g such that Ric = A\g for some constant A € R.

1.3 Lie groups and Lie algebras

Let G be a manifold and a group. G is a Lie” group, if the group operation o : G x G — G and
the inverse mapping ¢ : G — G are smooth. We denote the neutral element as e € G.

An omnipresent Lie group is the general linear group GL(R™), which is the set (and dif-
ferentiable manifold) of all automorphisms of the vector space R™. GL(R") is identified with
the set of all invertible (n x n)-matrices with coefficients in R. The group operation is matrix
multiplication. The inverse ( is matrix inversion. The neutral element e is the identity matrix
I, € GL(R"). The dimension of GL(R") is n?.

The isometries of a semi-Riemannian manifold (M, g) form the Lie group Aut(M,g). The
group operation is concatenation of isometries. The inverse of an isometry is the inverse diffeo-
morphism. The neutral element is the identity mapping on the manifold. If M is complete, we

have
m(m + 1)

dim Aut(M, g) < 5 ,

(1.10)

where m = dim M, [Sa97] p.120.
An immersed submanifold H of G that is also an abstract subgroup of G is called a Lie

subgroup.

Example 1.5. The set D, of all (n x n)-matrices with strictly positive entries on the diagonal
is a Lie subgroup of GL(R™). Dy is isomorphic to the Lie group (R"™,+), the space R with
vector addition. An isomorphism is given by (x1,...,z,) — diag(exp x1,...,expzy).

The set of all (n x n)-matrices with determinant 1 forms the special linear group SL(R™),

which again is a Lie subgroup of GL(R"). &

" Gregorio Ricci-Curbastro, * 12. Jan 1853 in Lugo/Ravenna, t 6. Aug 1925 in Bologna
8 Albert Einstein, * 14. Mar 1879 in Ulm, 1 18. Apr 1955 in Princeton
9 Marius Sophus Lie, * 17. Dec 1842 in Nordfjordeid, 1 18. Feb 1899 in Oslo



The left-translation by x € G is the diffeomorphism L, : G — G, which maps y — xy. A
vector field U € X(G) on G is left-invariant if dL¢|.Uz = Ue for all x € G. Such a vector
field is determined by u € TG thru @, = dL;|ecu. The term dL,|. abbreviates the differential
dyLz(y)|y=e. In general, to each (7, s)-tensor A on T, G, there corresponds a unique left-invariant
(7, s)-tensor field A on G with A, = A. The scheme for a (1, 2)-tensor is

A, T,G x TG ~ TG
LdLe(z)la L dL¢(z)la 1 dLgle for all x € G.
A TeG X TeG — TeG

A brief computation reveals, that the commutator [u, v]x of two left-invariant vector fields
u,v € X(G) again is a left-invariant vector field. This closeness leads to the following notion: The

Lie algebra g of a Lie group G is the vector space ToG together with a (1,2)-tensor [,]: gxg — g

called Lie bracket, or commutator. The Lie bracket is defined as [u, v] := [u, D]x|e for all vectors
u,v € g. The commutator is skew symmetric, i.e. [u,v] = —[v,u], and satisfies the Jacobi'”
identity,

[[w, v], w] + [[v, w],u] + [[w,u],v] =0 for all u,v,w € g. (1.11)

A left-invariant vector field u € X(G) induces a unique integral curve -, : R — G such that
Yu(0) = e, [Ar03] p.16. The exponential map is exp : g — G with u — ~,(1).

The Lie algebra of GL(R"™) is gl(R"), the set of all (n x n)-matrices. Two matrices X,Y €
gl(R™) commute as [X,Y]q = X.Y —Y.X, [HN91] p.26. The exponential map corresponds to
the matriz exponential expy : gl(R") — GL(R") with expy(X) = > 1cn, Xk /K.

Let (M, g) be a semi-Riemannian manifold. The Lie algebra of Aut(M,g) is the set of all
complete Killing vector fields on M, [ON83] p.255.

A vector subspace h C g is a Lie subalgebra of g if [h,h] C h. Then, b is a Lie algebra with

commutator induced by g restricted to elements of b.

Example 1.6. The set ? of all (n x n)-matrices with entries on the diagonal is the Lie algebra of
the Lie group D and a Lie subalgebra of gl(R™). Any two diagonal matrices X,Y € 0 commute,
i.e. the commutator [X, Y]y = X.Y — Y. X = 0 vanishes.

The Lie algebra of SL(R"™) is denoted s[(R™). The algebra consists of all (n x n)-matrices
with trace 0. s[(R") again is a Lie subalgebra of gl(R™). For instance, sl(R?) = (X1, Xo, X3) is

the 3-dimensional vector space spanned by the matrices

X, X5 X3
1(1 0 0 1 0 0 X 0 X -X
Xl_f ) X2: ) X3: ) with [a]g[: ' ? ’ .
2\0 -1 0 0 10 Xo | =X, 02X,
X;| X3 -2X; 0
By linearity, the commutator is determined by the values on elements of the basis. <&

10 Carl Gustav Jacob Jacobi, * 10. Dec 1804 in Potsdam, t 18. Feb 1851 in Berlin



Beispiele. Eine bekannte Gruppe dieser Art ist die folgende:
,_z2ta
- Uy + @y !

welche drei Parameter a@,, a,, @, enthilt. Fiibrt man die beiden

Transformationen )
o — z + a 2 — x 4 b,
T ayx + ay’ by’ -+ b

nach einander aus, so erhilt man:

r__ +¢

= C X +?'s !
WO ¢,, ¢, ¢, als Functionen von den @ und b durch die Relationen

__a +ba, — b, ~+ a, b, €0 = bya, + b0,
=13ba’ @ 1Fbhae’ BT 1+

&

definirt sind.

Figure 1.2 : Excerpt from Theorie der Transformationsgruppen, [Lie30] p.4. The author yields
the group action of SL(R?) as (ai,az,as) o (by,b2,b3) = (c1,¢2,c3) on a neighborhood of e =
(0,0,1).

Two Lie algebras g1, go are isomorphic if there exists a vector space isomorphism « : go — g1

satisfying [u, v]g, = a™1.[a.u, a.v]y, for all u,v € go. The corresponding diagram is

[’]921 g2 X 82 — 82

|« |« Ta b,
[,]gli g X g1 — 6

The Lie group Aut(g) is the group of all automorphisms o € GL(g) that leave the commutator
of g invariant as [u,v]qg = o~ .[a.u, a.v]4 for all u,v € g. The Lie algebra of Aut(g) is the set of

derivations
Der(g) := {6 € gl(g) : .[u,v] — [0.u,v] — [u,d.v] =0 for all u,v € g}. (1.12)

Conjugation by = € G is the mapping Z, : G — G with y — zyxz~!. The adjoint represen-
tation of G is the group homomorphism Ad : G — Aut(g) given by z +— dE;|e. The adjoint
representation of g is the homomorphism ad : g — Der(g) given by ad = dAd|.. The (1, 2)-tensor
ad : g X g — g is identical to the Lie bracket [,].

The descending series of a Lie algebra g is the sequence of subspaces g' C g defined iteratively
as

o] =9, and [g)"':=[g,[g)] forieN.
A Lie algebra is k-step nilpotent if [g]* # [g]*T! = {0}. A k-step nilpotent algebra n is the Lie
algebra of the group (n, ocpy ), where the group action ocpy on n is given by the Campbell-Baker-

HausdorfI series

1 1 1
The inverse ( : n — n maps x — —z, and the neutral element has the coordinates e = (0,...,0).

Vector addition other than (1.13) is not a meaningful operation on the Lie group (n, ocpp).
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Expression (1.13) lists the first terms of an infinite series, [HN91] p.44. However, for a k-
step nilpotent Lie algebra summands involving the commutator of order > k vanish. For many
important Lie groups such as the orthogonal group O,, = {x € GL(R") : 2.2 = I} for instances
with n > 3, an explicit formula of the group operation does not exist in local coordinates. In
the neighborhood of e, the first terms of the Campbell-Baker-Hausdorff series usually provide a

good numerical approximation of the group action.

Example 1.7. Let n € No. The n-Heisenberg'' group He, is a 2n + 1-dimensional Lie sub-
group of GL(R"™*2) consisting of the matrices

1 pf h
He,, := 0 I, g | :pgeR" heR C GLR"™). (1.14)
0 0 1

The group operation of He, is matrix multiplication, the inverse mapping is matrix inversion.
As a manifold He,, is diffeomorphic to R?"*! = (p1,...,pn, h,q1,...,q,). Encoding the matrices
(1.14) as triples (p, h,q) € R™ x R x R™, the group action is

(xpv Th, xq) © (ypa Yh, yq) = (xp + Yp, Tn + Yn + xz;-yqv Tq + yq)‘

Inversion ¢ maps (zp, Th, xq) — (—xp, —xp + xg.xq, —x4). The triple e = (0,0, 0) corresponds to
the identity matrix.
The Lie algebra to He,, is the n-Heisenberg algebra be,. Naturally, ke, is a Lie subalgebra of

gl(R"*2) consisting of the matrices

pl h

be,, = ‘p,g €R", heR p C gl(R"F2). (1.15)

o o O

0 ¢
0 0
The commutator of ke, is the matrix commutator. However, encoding the elements of the algebra

fe,, as triples (p, h,q) € R™ x R x R" reduces the commutator to
[(up, un, tq), (vp, Vi, vg)] = (0, U;:;F-Uq - vg~“qv 0). (1.16)

We denote the canonic basis of ke, as (p1,...,Pn, R, q1,.-.,qn). Using (1.16), the only non-
zero commutators of basis elements are [p;, ¢;] = —[¢qi,pi] = h for i = 1,...,n. We summarize

the commutator relations of he;, and be, as follows:

pr P2 h @ g

p1 h q pi| 0O 0 O h O

il 0 0 & | 0 0 0 0 &
[7]621_ [7]092_

h 0O 0 O h 0 0O 0 0 o0

al=h 0 0 al=h 0 0 0 0

“| 0 —h 0 0 0

1 Werner Karl Heisenberg, * 5. Dec 1901 in Wiirzburg, 1 1. Feb 1976 in Miinchen
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For n > 1, we have [k,]?> = hR, and [k,]®> = {0}. Thus, the n-Heisenberg algebra ke, is
2-step nilpotent. The Campbell-Baker-Hausdorff series reduces to x ocppy = ¢ +y + %[SH, y]. In

triple notation, we obtain

(:I}pa Th, wq) Ocbh (yp: Yh, yq) = (xp + Yp, Th + Yn + (-T;{yq - yg‘rQ)/Q? Zq + yq) .

&

Consider two Lie groups K,G, and a Lie group homomorphism ¥ : K — Aut(G). The
semi-direct product G xg K is the manifold G x K with group action

(z1,91) © (22, y2) = (z1 06 ¥(y1)(z2),y1 ok y2) for z; € G, y; € K.

We denote by g, ¢ the Lie algebras of G, K. The Lie algebra of G xy K is the vector space g ® ¢

with commutator
[u1 +v1, ug + va] = [u1, uzlg + [v1, va]e + (dtp|e.v1).u2 — (dV|e.v2).ur  for u; € g, v; € €, (1.17)

where 1 : K — Aut(g) with y — d;V(y)(2)|z=ecq. Then, dip|eck.v is a derivation on g for all
v € ¢, [HN91] p.223.

Conversely, for a homomorphism A : ¢ — Der(g) we define the semi-direct product Lie
algebra with commutator as in (1.17) with di|. replaced by A.

The Lie algebras most relevant for this thesis are semi-direct products of a nilpotent Lie
algebra n and a 1-dimensional algebra, which we denote by R. Formally, we have n xa R with
A : R — Der(n). However, the mapping A is determined by a single matrix, say § := A(1) €
Der(n). We denote by n x5 R the Lie algebra with commutator

[ur 4+ v1,ug + vo] = [ug, ugln + v1 dug —v2du;  for u; € n, v; € R. (1.18)

The commutator (1.18) satisfies the Jacobi identity iff § : n — n is a derivation on the Lie

algebra n.

At the beginning of this section, we have indicated how to extend a tensor A of arbitrary
tensor rank on g = T,G to the corresponding left-invariant tensor field A on G. The left-
translation L, : G — G with y — zy is a diffeomorphism for all z € G. Accordingly, the
mapping dL;|e : TeG — T,G is a vector space isomorphism for all x € G. Thus, the smooth
(0, 2)-tensor field B originating from a scalar product B on T,G defines a scalar product at every

point « € G, i.e. B is a metric on G.

B,: T,G x  T,G - R
L dL¢()le L dL¢()le 11d  forall z € G.
B: T.G X T.G — R

The tuple (G, B) defines a semi-Riemannian manifold. The left-translation L, : G — G is an
isometry for all € G. Just as the metric B is left-invariant, all geometric tensor fields are
left-invariant. For instance, the Riemannian curvature is R, for an appropriate (1,3)-tensor R,
on T.G. In the next section, we yield R, in terms of the commutator tensor ad, and the scalar

product B on g in the more general context of homogeneous triples.
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1.4 Homogeneous spaces, pairs and triples

A subgroup H C G of a Lie group G that is also a closed subset of G, is a closed Lie subgroup.
A homogeneous space is the coset manifold G/H = {zH : © € G}, where G is a Lie group,
and H C G is a closed Lie subgroup, together with the mappings

projection to G/H m:G—G/H with =z +— xH,
left-action on G/H 7:GxG/H—G/H with (x,yH)w— zyH.

The following theorem from [Bo86] p.166 allows us to treat the factor space G/H as a

differentiable manifold, and 7, 7 as smooth mappings.

Theorem 1.8. There exists a unique C*°-manifold structure on the space G/H with the prop-
erties: (i) m is smooth and (ii) x € G is in the image o(V') of a C* section V, 0 on G/H.

The natural action T : GXxG/H — G/H is a smooth action of G on G/H with this structure.
The dimension of G/H is dimG — dim H.

Analogous to L, : G — G with y — xy for x € G, we specialize the left-action to 7, : G/H —
G/H with yH — xyH for x € G. The identities m(xy) = 7,(7y), and 7,7, (2H) = T4y(2H) for
all z,y, z € G are immediate consequences of the definition. We call H the isotropy group.

For u € g we define the fundamental vector field u € X(G/H) by

Upy = dy7(exptu,zH)|;—g for all zH € G/H, (1.19)
where exp : g — G is the exponential mapping. @ is a Killing vector field on G/H, and
[, 0]x = —[u,v], for all u,v € g, [ON83] p.255.

On a Lie group G, we made use of the vector space isomorphisms dLC(m)‘ 2, and dL;|e for all
x € G to extend an (7, s)-tensor A on g = T,G to the left-invariant tensor field A on G. There
are no restrictions on the tensor A. The framework of homogeneous spaces provides the vector

space isomorphisms
dTC(z)’xH :TonG/H — T,G/H, and drle:T,G/H — T,yG/H forall z € G,
where o = eH denotes the distinguished coset. The scheme for a (1,2)-tensor A on T,G/H is
Ay TonG/H x  TonG/H — TopG/H

! dTC(w)‘fEH ! dTC(m)|xH T drzlo for all z € G.
A: T,G/H x T,G/H —  T,G/H

However, if H # {e} the choice of y € G with 7¢(,)(zH) = o is not unique. In fact, any group
element y = xh with h € H maps 7¢(,)(zH) = ((h){(r)zH = o. The diagram is well defined iff

A: T,G/H x T,G/H — T,G/H
Ldremlo Ldemlo T d7alo for all h € H
A: T,G/H x T,G/H — T,G/H



13

commutes. Any (7, s)-tensor A on T,G/H that is stable under the change of basis by d7y,], for all
h € H extends to the unique left-invariant tensor field A on G/H by the procedure illustrated
above.

Left-invariant metrics B on a homogeneous space G//H are of particular interest. Such a
metric originates from a single scalar product B on T,G/H. The tuple (G/H, B) defines a

semi-Riemannian manifold. The Koszul formula (1.4) restricted to fundamental vector fields

becomes
2 <V5€L, 'U~}> == <[ﬂ’a 6]%7 U~)> - <’I~L, [QIJ, 17]36> o <[’U~}, '&’]37 Q~)>
) ) ) (1.20)
= ([u, v], @) + (@, [w, v]y) + ([w,ulg,0)  for all u,v,w € g.
According to (1.8), the Riemannian curvature simplifies to
Ri 5w = Vy 35U — Vvgaal + Vi, 0)x
(1.21)

= Vy,il — Vv, a0 — Vﬁ,[u:v}g for all u,v,w € g.

The curvature is left-invariant, i.e. R = R,. Properties such as Riemannian-, and Ricci-flatness

deduce from R,.

The homogeneous pair associated to a homogeneous space G/H is the tuple (g, h), where g is
the Lie algebra of GG, and § C g is the maximal Lie subalgebra with exph C H. By m, we denote
a vector space complement so that g = h@dm. Since H is a closed Lie subgroup, the homogeneous
space G/H can be locally parametrized by a submanifold M of G that consists of the points
expm € G for vectors m € m in a neighborhood of 0 € m. We identify m = T,.M = T,G/H, and
M ~ M/H C G/H as an open subset of the homogeneous space.

We agree on the following convention. A linear mapping A : g — g induces Aly : V — g,
and Ay : V — V for a subspace V' C g. Aly is just the restriction to elements in V', whereas
Ay =my o Aly.

The transformation of T,G/H by drp|, for h € H corresponds to the transformation of m
by Ad(h)m for h € H. The following diagram commutes

T,G/H — g/h — m
T d7alo 1 Ad(h) T Ad(h)y  forall h € H,
T,G/H — g/b — m

where Ad : H — Aut(g/h) is the induced adjoint representation on the quotient g/h, since b is
Ad(H)-invariant. This motivates the linear isotropy group I, and the linear isotropy algebra i,

I ={Ad(h)m:h € H} C GL(m)
i={ad(h)m:h € b} ={m— [h,m]n:h €bh} C gl(m).

We call tensors on m p-invariant that are Ad(h)m-invariant for all h € H. For instance, denote
with B, C' tensors on m of rank (0,2), and (1,2). Then, B, C are p-invariant if

B(a.u,a.v) = B(u,v), and o L.C(au,av)=C(u,v) foralu,vem, acl,
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Equivalently, B, C on m are p-invariant if

B(X.u,v) + B(u, X.v) =0,
-X.C(u,v) + C(Xu,v) + Clu, Xv) =0 for all u,v € m, X €.

The isotropy representation is p : h — gl(m) with p(h) = ad(h)m for h € b.

A p-invariant tensor on m uniquely extends to a left-invariant tensor field on G/H. Denote
with B the left-invariant metric on G/H, that originates from a p-invariant scalar product B
on m. We consider the semi-Riemannian manifold (G/H, B). In the sequel, we derive a formula
for the Riemannian curvature tensor R, at o € G/H in terms of the commutator of g, and the
scalar product B on m.

We introduce the Levi-Civita connection tensor A : g — gl(m) with
A(u).vm = (V)  for all u,v € g,
which represents the Levi-Civita connection V in the point o € G/H. According to (1.20),
2B(A(u).vm, wm) = B([u, v]m, wm) + B(tm, [w, v]m) + B([w, t]m,vm) for all u,v,w € g.
The tensor A apparently decomposes as

1
A(u). vy = §[u,v]m +v(u,v) forall u,v € g, (1.22)

where v : g X g — m is uniquely determined by
2B(v(u,v), wm) = B(tum, [w,v]m) + B([w, ulm,vm) for all u,v,w € g. (1.23)

Interchanging u, v in the rhs. and using that B is symmetric gives the symmetry v(u,v) = v(v, u)

for all u,v € g. Let h,h1,he € h, m € m, and w € g. We yield

2B(v(h1, ha), wm) = B(0, [w, ho]m) + B([w, h1]m,0) = V]pxp =0 (1.24)

2B (v(h,m), wn) = B([w, hlm,m) = B([h, m]m, wm) = v(h,m) = %[h, M), (1.25)

where the last transformation follows from the p-invariance of B.

Let u,v € m, h € b, then B(um, [k, vV]m) + B([h, u|m, vm) = —B([h, Um], vm) + B([h, tm], vm) =
0. Thus, the restriction of (1.23) to elements u, v, w € m completely determines v|gmxm. With
respect to a basis on m, the equation reduces to a system of linear equations in the coefficients
of V|mxm-

In particular, we obtain
1 1
A(h).um = i[h,u]m +v(h,u) = 5([h,u]m + [h,ulm) = [h,ulm forall h€bh, ueg.

Restricted to fundamental vector fields, (1.3) becomes (Viu,w) + (0, Vgu) = 0 for all
u,v,w € g. Hence, B is A(u)-invariant for all u € g, i.e. B(A(w).vm, wm) + B(vm, A(w).wm) =0
for all v,w € g.

According to (1.21), the Riemannian curvature in o € G/H evaluates as

Ro(tm, V) wm = A(u). A(v).wm — A(v).A(w).wm — A([u, v]g) wem  for all u,v,w € g.
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Thus, all curvature endomorphisms are determined by
Ro(u,v) = [A(u),A(v)]g[ — A([u,v])  for all u,v € m. (1.26)

Algebraically, the three curvature identities in (1.6) follow from (i) the skew symmetry of the
definition (1.26), (ii) the Jacobi identity restricted to elements of m, and (iii) the A(u)-invariance
of B for all u € g.

The Ricci curvature at o € G/H is the tensor Ric, : m x m — R determined by

Rico(u,v) = tr (w — Ro(w,u).v) for all u,v € m.

A homogeneous pair (g, ) is reductive, if there exists a complement m with g = h ® m, so
that [h, m] C m. With respect to such a decomposition, the adjoint representation Ad restricted

to elements of H is of the form

x| 0
Ad(h) = " where the *’s denote invertible matrices that depend on h € H.
0 * /m
m

The linear isotropy algebra consists of the mappings ad(h)m € gl(m) defined by m +— [h, m| for
h € h, m € m, in contrast to m +— [h, m|y,. All homogeneous pairs in this thesis are reductive.
A homogeneous pair (g, ) is symmetric, if there exists a vector space decomposition g =
h @& m, and a Lie algebra automorphism « : g — g with ap = Idy, and o = —Idy. Let h € b,
and m, my, ms € m. The relations
[h,m] C m alh, m| = [ah,am] = [h,—m] = —[h, m]

follow from
[m,m] C b almi, me] = [amy, ams] = [—=mq1, —ma| = [m1, ma).

The automorphism « is the starting point to classify Lorenzian symmetric triples, [CW70]. The
classification is also carried out in [Ne02].

A homogeneous pair (g, h) is effective, if h contains no non-trivial ideal of g. An ideal of
a Lie algebra g is a subspace j C g with [j,g] C j. The trivial ideals of g are {0}, and g. All
homogeneous pairs in this thesis are effective.

Two homogeneous pairs (g1, h1), and (ge, h2) are isomorphic, if there exists a Lie algebra

isomorphism « : go — g1 so that a(hz) = b;.

A homogeneous triple (g,bh,B) is a homogeneous pair (g,h) combined with a p-invariant
scalar product B on a vector space complement m with g = h & m. We have illustrated that,
locally, a homogeneous triple (g, h, B) uniquely determines the corresponding semi-Riemannian
homogeneous space G/H with metric B. Therefore, we shall call two homogeneous triples
(g1, b1, B1), and (g2, b2, B2) isomorphic, if they locally induce the same semi-Riemannian ho-
mogeneous space. Equivalently, two homogeneous triples are isomorphic if there exists a Lie

algebra isomorphism « : go — g1 so that

° Oz([’)g) = bl, and

o Bi(am-u,am.v) = Ba(u,v) for all u,v € my, where oy : mg — my denotes the mapping

induced by «.
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az

Figure 1.3 : We illustrate V', and M from Example 1.10. Also, we plot sets of the form zV for

several x € M.

Remark 1.9. To show that (g1, b1, B1), and (g2, h2, B2) are isomorphic, we provide a Lie algebra

isomorphism « : g2 — g1 in matrix form as

ClE \h . hxh . . h
o= with C € R™", D € R™*™ invertible, and E € R"™*™,

0|D my

b2 mo

and check the matrix equation DT.B;.D = By. The letters h, m denote the dimensions dim b;,

and dimm;, that are the same for ¢ = 1,2. D corresponds to ay. <&

Example 1.10. Locally, there exists a diffeomorphism of SL(R?) onto U C R?® with e :=
(1,0,0) € U, so that the group action of SL(R?) coincides with

aiby + agbs as + arby asby + b3
asbs +1 ’ agby + 1 ’ agbs + 1

aob=

for points a = (a1,a2,a3), b = (b1,ba,b3) in U close to e. The coordinate e maps eo a = a,
and a oe = a for all a € U, thus acts as the neutral element. All terms we state in the sequel,
are valid only for points sufficiently close to e € U. For instance, the inverse mapping locally
coincides with ((a) = é(l, —ag, —as).

We have introduced s[(R?) in Example 1.6. If we choose X; := da;|. as the basis for the Lie
algebra g = T.U ~ T.R?, the commutator on elements X; matches the table in the example.
For instance, [ X2, X3] = 2X].

We identify U C R3 ~ g. Then, for a vector X € g, the image of the exponential mapping
exptX = Ax(t)- X for t € [—¢,¢] is a straight line in U. However, the function Ax : [—¢,¢] — R

depends on the vector components of X in a non-trivial way.
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Figure 1.4 : We plot the fundamental vector fields X; = (x1, —x2), Xy = (1,—23), and Xy =

(—22,1) on M. Any fundamental vector field @ for u € g is just a linear combination of the X;.

The adjoint representation Ad is of the form

a1 +asa3 —2aiaz  2a0

1
Ad(a) = m —ai1as a% —a% fOI" a < U (127)

as —a% 1

We intend to locally model the homogeneous space SL(R?)/H, where H is the 1-dimensional
closed Lie subgroup H = {(eot egf) A R} C SL(R?). The associated homogeneous pair is
(st(R?), {(§ %) : t € R}).

Denote with V' = {(a1,0,0) : a1 € R*}NU the subset of U, which parametrizes H. Naturally,
we identify h = (X;) C g. We choose m = (X9, X3) as the vector space complement, so that
g=hdm. Theset M = {(1,21,22) : x; € R} NU coincides with the image of the exponential
map restricted to vectors in m close to 0 € g. Let the x; for i = 1,2 be the coordinates on M.
The point o € M has coordinates (0, 0).

For points sufficiently close to e € U, the projection and the left-action coincide with

m(a) = <a2, a;;) , and T(a,z)= <a2 tair 63+ T ) )
a

1 azx1 +1 ’ a1 + asxo

Elements in the linear isotropy group are of the form Ad((al,0,0))m for (a1,0,0) € V.
According to (1.27), we yield

1 0 0
al 0
Ad((al,0,0))m =10 a O = . for (a1,0,0) € V.
0 0 L O

al m

Since b is 1-dimensional, the isotropy representation p : h — gl(m) with p(h) = ad(h)n for
h € b is determined by the value on the basis element X; € . The commutator relations
[X17 X2]m == X2 1 0

define p(X;) =
(X1, Xa]m = —X3 0 -1
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The p-invariance condition p(X1)?.B + B.p(X1) = 0 of a (0,2)-tensor B : m x m — R on m

shows that there is 1 degree of freedom, if B is moreover symmetric. The general setup

2 0
g | P results in ~ p(X1)T.B + B.p(X1) = b

B2 B3 0 —203

for coefficients 3; € R. The p-invariance demands 31, 83 = 0. We substitute 3 = (B5. B defines
a p-invariant scalar product on m if 3 # 0. Then, the differential

1
1 = 0 _ 1 0
@ extends Bto B=-—— p

dr, =— ,
@y =1 - 0w | 5 g

which defines a left-invariant metric on M. The Riemannian curvature tensor field of (M, B) is

1 -2 0 ) ) -2 _
R(0z1,013) = ———5 , while Ric=—B8B.
(1 - 331.%2) 0 2 ﬂ
Alternatively, we compute v : g X g — m as
X1 X X3

to yield the Levi-Civita connection tensor A : g — gl(m) as A(X1) = p(X1) = (§%), and
A(X2) = A(X3) = 0. Recall that m = (X3, X3), so that

—2 0
Ro(X3, X3) = [A(X2), A(X3)] , — A([X2, X)) = —A([X2, X3]) = —A(2X)) = 0 5 )

confirms R(0x1,0x2),, indeed! &
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Chapter 2

Previous work

The collections of pairwise non-isomorphic homogeneous pairs, and triples in [DK95], and [Ko01]
by B. Komrakov, and B. Doubrov make an ideal playground to get acquainted with homogeneous
spaces. The classification of 4-dimensional homogeneous pairs in [Ko01] serves as the starting
point to detect all 4-dimensional Lorentzian homogeneous triples with isotropy dimbh > 1, and
curvature R, # 0, Ric, = 0.

To several publications we point later on: M. Cahen and N. Wallach classify the Lorentzian
symmetric triples (g, b, B) with curvature R, # 0, Ric, = 0 early in [CW70]. Any such triple is

isomorphic to

(9,0, Lns+2)  with g=1te, xsR, and b= (p1,...,pn).

These symmetric triples are covered by our more general class of homogeneous triples, which we
introduce in Chapter 4. Corollary 4.12 treats the geometry. In [Ne03], T. Neukirchner reproduces
the classification of Lorentzian solvable symmetric triples with curvature R, # 0, Ric, = 0.

M. Fels and A. Renner establish the following result in [FR05]: Any 4-dimensional Lorentzian
homogeneous triple with isotropy dimbh > 1, and curvature R, # 0, Ric, = 0 is reductive. This

is in accordance with our more descriptive Corollary 5.11.

2.1 Low-dimensional semi-Riemannian homogeneous spaces

In [DK95], B. Doubrov and B. Komrakov classify the semi-Riemannian homogeneous spaces
(G/H, B) of dimension dimG/H < 3. However, they do not cover 3-dimensional Lie groups
with left-invariant metric. Their approach is guided by the following result, [DK95] p.3.

Theorem 2.1. Let (g,h, B) be a semi-Riemannian homogeneous triple of dimension < 4. There
exists a unique semi-Riemannian homogeneous space (G /H, B) corresponding to (g, b, B), such

that the manifold G/H is simply connected and H is connected.

First, the authors classify the homogeneous triples (g,h, B) of dimension < 3. The clas-
sification is an exhaustive list of pairwise non-isomorphic homogeneous triples (g, b, B). The
authors omit the case dimg = 3,dimbh = 0. Secondly, they construct the homogeneous spaces
(G/H, B), corresponding to each homogeneous triple, such that G/H is simply connected and
H is connected.

The classification of homogeneous triples is stated without derivation. The description of

the homogeneous spaces is sparse. There are gaps in the constructions.

Example 2.2. The homogeneous triples (g, b, B) of the form

g=Mh; xsR, bh=(p), and B hasindex 1 (2.1)
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Table 2.1 : The derivation 0 : he; — he; for 3.1, 3.3, 3.4, and 3.5. The real Jordan decomposition

J(9) of the matrices § are shown in the bottom row.

Index 3.1 3.3 3.4 3.5
—-1<axl1 0< o
000 00 —1 0 0 —a 0 0 —(a?+1)
d 000 02 0 0 a+1 0 0 2« 0
100 10 2 1 0 a+1 1 0 20
01 0 110 10 0 a 1 0
J(9) 00 0 010 0 a 0 ~1 a 0
000 00 2 00 a+l 0 0 2a

are indexed in the classification of [DK95] as 3.1, 3.3, 3.4, and 3.5. The Lie algebras g differ
only in the derivation ¢ : he; — bey. Table 2.1 lists the different derivations as (3 x 3)-matrices
with respect to the basis be; = (p1,h,q1). In Corollary 5.8, we confirm that these derivations
indeed classify the homogeneous triples of the form (2.1). The Lorentzian scalar product on
m = (h,q1,2) is B = L3 for all four types 3.1, 3.3, 3.4, and 3.5.

For instance, the homogeneous triple (g, h, B) with index 3.4 is characterized by

P h q1 Z
pi| 0 0 h —q1 00 1
ad= h| 0 0 0 —(a+1)h , and B=|0 1 0
q | —h 0 0 ap1 — (a+ 1)q 1 00

zl @ (a+1h —api+(a+1)q 0

The pseudo-Riemannian homogeneous spaces (G/H, B) corresponding to each of the homo-
geneous triples 3.3, 3.4, 3.5, such that G/H is simply connected and H is connected, share the
following properties: The Lie group G is diffeomorphic to R*. The manifold G/H is diffeomor-
phic to R3.

According to the paper, the action 7 : G x G/H — G/H varies only slightly among these
homogeneous spaces. Unfortunately, the authors provide no derivation for 7. This is fatal, since
T — as stated in the paper — is not well-defined. However, the authors convert each derivation
§ to Jordan! normalform, which we reproduce in Table 2.1 as J(§). The Jordan normalform
seems to be advantageous to design the left-action 7. For this reason, the authors separate 3.3
from 3.4(a = 1).

! Marie Ennemond Camille Jordan, * 5. Jan 1838 in Lyon, t 21. Jan 1922 in Paris
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The authors declare the metric B on G/H ~ R3? as

Index flxy,x2) =
0 0 1 A 5
B=|o1 o0 . defined by OO o )
34 | —2a(a+ 1) +axl

1 0 f(fL‘l,:L‘Q)
3.5 —daxy  +(202 +1)a3

We have confirmed that the Riemannian curvature R of the semi-Riemannian manifold (R3, B)
in 0 € R? coincides with R, computed in local terms using (1.26). In fact, Corollary 4.12 states

the curvature tensors R,, Ric, for these types of spaces. &

2.2 Einstein equation on four-dimensional homogeneous pairs

In [Ko095], B. Komrakov classifies the homogeneous pairs (g,h) of dimension 4 with isotropy
dimb > 1. In [KoO1], he investigates the extentions of the homogeneous pairs to homogeneous
triples. Motivated by the relevance in physics, the author states the solutions to the Einstein-

Maxwell? equation on each homogeneous pair. In local terms, the Einstein-Maxwell equation is
Rico, — AB = Mg with A € R, (2.2)

where B, Ric,, Mq are symmetric (0, 2)-tensors on m. B is a p-invariant scalar product on m.
The Ricci curvature Ric,, and Mg are completely determined by the commutator tensor ad on g
and the scalar product B. In the thesis, we restrict to Lorentzian homogeneous triples (g, b, B)

with solutions to (2.2) subject to
Ric,b =0, and Mg =0. (2.3)

Then, the Einstein-Maxwell equation reduces to Ric, = AB. Consult [ON83] pp.336 for the
meaning of Mq # 0 in general relativity theory.

We evince how the material in [KoO1] helps us to detect homogeneous triples with (2.3). In
the first chapter of [Ko01] p.42-121, B. Komrakov lists all pairwise non-isomorphic homogeneous

pairs (g, h) of dimension 4 with dimb > 1.

Example 2.3. The homogeneous pair (g, h) indexed as 2.52.4 is part of the classification, [Ko01]
p.94. The Lie algebra is g = tey x5 R with basis g = (p1,p2, h,q1, g2, z). The Lie subalgebra is
h = (p1,q2). The derivation § : ey — ke, is the linear mapping defined by the matrix

0 0 0 s+1 0
0 0 0 O 1
6= 0 0 0 0 0], 0<seR,
-1 0O o0 0 0
0 s—1 0 0 O

2 James Clerk Maxwell, * 13. Jun 1831 in Edinburgh, t 5. Nov 1879 in Cambridge
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with respect to (p1, p2, h, q1, g2). Homogeneous pairs with different constants s are non-isomorphic.
Recall from the introduction that a pair (g,bh) is characterized by the tensor ad on g. To

avoid any misconception, the author states the commutator on g as

el €o Ul U9 us Uy
egr| O 0 0 Uy —Ug 0
ea| O 0 0 0 Uy —u1
ad = 44 0 0 0 0 0 0 for 0 <seR.

ug |—up 0 0 0 (s+1)e; 0

ug | ug —us 0 (—s—1)e; 0 (1—s)es

ug | 0 up 0 0 (s —1)es 0
The table matches the commutator of te, x5 R if we set e; = g2, €2 = p1, u1 = —h, uy = pa,
uz = z, and ug = q1. &

In the second chapter, the author states all possible solutions to the Einstein-Maxwell equa-
tion on each of the 4-dimensional homogeneous pairs (g, h). The solutions are given in terms of

B, \, Q. The skew symmetric (1,1)-tensor 2 on m relates to the Mq as
Mg =-0F . B7L.Q. (2.4)

In case B is of index 1, Lemma 1.3 warrants the equivalence Mo = 0 < 2 = 0. Thus, no solution
to the Einstein-Maxwell equation B, A, with  # 0 leads to a homogeneous triple (g, b, B)
subject to (2.3).

Example 2.4. We continue the discussion of the homogeneous pair from the previous example.

Any solution to the Einstein-Maxwell equation in terms of B, A, 2 is of the form, [Ko01] p.156,

0 0 a O 0 0 0 0
0 a 00 0 0 a O
B = , Q= , A=0,
a 0 b O 0 —« I5]
0 00 a 0 0 -6 0

where a, b, o, 8 € R satisfy the relations 2a = —(a? + 3?), and o? + 3% # 0.
Substituting A = 0 in the Einstein-Maxwell equation, we obtain Ric, = Mg, where

00 0 0

00 0 0
Mg =-QT B~ 1=

00 —(a*>+p%)/a 0

00 0 0

However, setting € = 0 necessarily annihilates o, 3, which violates the condition o 4 3% # 0.

Thus, the pair (g, h) does not extend to a homogeneous triple (g, , B) subject to (2.3). &
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Chapter 3

Lorentzian homogeneous triples from Komrakov’s list

We are interested in homogeneous triples (g, b, B) with decomposition g = h & m, that have

certain geometric properties:

B has index 1 the scalar product B on m is Lorentzian
R, #0 not Riemannian-flat (3.1)
Ric, =0 Ricci-flat

If dimm < 3, no such triples can exist, since for semi-Riemannian manifolds of dimension
< 3 the implication Ric = 0 = R = 0 holds. For instance, consider a triple of dimension
3. A (1,3)-tensor R, on m that satisfies the curvature identities (1.6) locally has 6 degrees of
freedom. Let B be a Lorentzian scalar product on m. We choose a basis on m = (uy, ug, u3), so
that B = L3. Then, the curvature R,, and Ric, are of the form

RO(’LLl,UQ) = Ro(ul,U3) = RO(UQ,Ug) = RiCO =
—Cq4 —C9 0 —Cg —Cp 0 —C; —C3 0 C1 —Cq —C9 — Cg
—C1 0 C2 —C4 0 Cy —C9 0 C3 —C4q —262 —Cx
0 c1 ¢4 0 c4 Cg 0 cy Cy —Cy —Cg —Cs c3

with coefficients ¢; € R for ¢ = 1,...,6. We have Ric, = 0 = R, = 0, because demanding

Ric, = 0 eliminates all coefficients ¢;.

In [Ko01], B. Komrakov publishes a list of all pairwise non-isomorphic 4-dimensional homo-
geneous pairs (g, h) with dimbh > 1. In addition, the author references those pairs, which admit
a p-invariant Lorentzian scalar product on m. According to Theorem I1.2.2 [Ko01] p.164, there
are 63 such pairs.

In the next section, we argue that 10 of the 63 homogeneous pairs in question extend to
homogeneous triples (g,h, B) of the desired geometry (3.1). Suppose the classification of 4-
dimensional homogeneous pairs in [KoO1] is correct. Then, a sequence of lemmas in Section
3.2 proves that any 4-dimensional Lorentzian homogeneous triple with curvature R, # 0, and

Ric, = 0 is isomorphic to

(g,h,Ly) with g=1t, xR™"xsR, and b= (p1,...,pn)

for either n=1,m=1,orn=2,m =0.
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3.1 Selection of homogeneous pairs

Section 2.2 provides a concise overview on B. Komrakov’s work [Ko0O1]. A homogeneous pair in
his classification is explicitly characterized by the commutator tensor ad. Additionally, for each

pair the author states all possible solutions to the Einstein-Maxwell equation
Ric, — AB = Mg with A € R, (3.2)

in terms of B, A, Q, and Mg = —Q7.B~1.Q. Having ad, B, Q, X at hand, there are simple criteria
for a pair (g,h) not to extend to a triple (g, b, B) with geometric properties (3.1).

According to Theorem I1.2.2 [Ko01] p.164, 63 homogeneous pairs extend to Lorentzian ho-
mogeneous triples. However, we show that 47 of these 63 triples do not satisfy R, # 0, or

Ric, = 0 by applying one of the arguments below.

. Any homogeneous triple (g, h, B) with decomposition g = h & m and [m, m] =

{0} is Riemannian-flat, i.e. R, = 0. Lemma 3.1 below gives the proof. [m,m] = {0} is

determined easily from the commutator tensor ad.

° Non-zero A in the Einstein-Maxwell equation Ric, —AB = Mg causes either Ric, #
0, or Mg # 0. However, we demand Ric, = 0, and Mg = 0.

° The entries of 2 and B sometimes are correlated. Setting {2 = 0 might cause the

determinant |B| = 0 to vanish. Then, B does not define a scalar product on m.

e ||B| > 0| Similarly, the correlation between © and B might enforce |B| > 0. But, the

determinant of the matrix associated to a Lorentzian scalar product is always negative.

° This label refers to pairs whose Lorentzian, Ricci-flat extensions are necessarily

Riemannian-flat. The Riemannian curvature R, is not stated explicitly in [Ko01].

Table 3.1 minutes the complete selection process. Due to the extent, we do not derive the
properties of all 63 pairs in this thesis. However, we demonstrate the application of each criteria
in an adequate example. Ambitious readers, who are in possession of a copy of [Ko01] may

easily verify the selection process using Table 3.1.

Lemma 3.1. Any homogeneous triple (g, h, B) with decomposition g = h@m, and [m, m] = {0}

is Riemannian-flat, i.e. R, = 0.

Proof. The Riemannian curvature tensor R, of a triple (g, h, B) involves the computation of the
terms v, A. First, we show that [m,m] = {0} = v(u,v) = 0 for all u,v € m. The implication is

true, since v|mxm is determined by
2B(v(u,v),w) = B(u, [w, v]m) + B([w, u]m,v) for all u,v,w € m
= B(u,0) + B(0,v) = 0.

To obtain R, (u,v) = [A(U):A(U)]g[

A(u) =0 for all u € m. Note, A(u).v = 3[u, v]m + v(u,v) = 0 for all u,v € m. O

— A([u,v]) = 0 for all u,v € m, it clearly suffices to show
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Table 3.1 : Indices of homogeneous pairs that admit a p-invariant Lorentzian scalar product
on m according to Theorem I1.2.2 [KoO1] p.164. A mark in the table indicates which selection

criteria applies to a homogeneous pair. A tuple (7, j) refers to Example i.j in the thesis.

Index | [p,m] ¢ m || fmm =0 | A0 | Bl=0][B]>0| Ro=0] fine |

1.11.2 .
1.1%5 * (3.4)
1.1'.6 .
1.1t7 .
1.11.10 .
1.12.2 e (3.7)
1.12.6 .
1.12.7 .
1.12.8 ° (3.7)
1.12.9 .

1.12.10 .
1.12.12 .
1.13.1 .
1141 .
1.4%.2 o e (3.7)
1.41.3 . e (3.3)
1.4 .4 o .

1.41.8 o

1.41.9 .
1.41.10 .
1.41.11 .
1.41.12 o (5.3)
1.41.13 .
1.4'.14 .
1.41.15 e (3.5)
1.41.16 .

1.41.17 .
1.4.18 .
1.41.19 .
1.41.20 .
1.4%.21 .
1.41.22 .
1.4%.23 e (5.3)
1.41.24 .

1.41.25 .
1.4%.26 e (3.2)
2.12.1 .

2.12.2 .
2.12.3 .
2124 .

2.12.5 .
2.12.6
2.41.2 .
2.41.3
2.52.1




26

Table 3.1 (continued)

index | [hmZm | [mm=0|A#0||B|=0||B|>0| Ro=0| fine
2.52.2 .
2.52.3 o
2.52.4 o (2.4)
2.52.5 .
2.52.6 .

2.52.7 .
3.22.1 . .
3.22.2 .
3.32.1 e (3.6)
3.324 .

3.51.1 o
3.51.4 .
3.52.1 .
3.52.4 .
4121 .

6.13.1 .
6.13.2 .
6.13.3 .

Within the following examples, we denote the basis elements of the Lie algebra g = h dm

by h = <617"'7edimb> and m = <U1,...,U4>.

Example 3.2. In [Ko01] p.73, the homogeneous pair (g,h) with index 1.41.26 is

defined by

e U] u2 uz U4

etr|] 0 0 wu wuy O

alo 0O 0 0 0 O

u | —u3 0 0 0 O

ug|—ue 0 0 0 O

us| O 0 O 0 O

We notice [m,m] = 0, thus R, = 0 by the previous lemma. O

Example 3.3. Proposition 1.41.3 in [Ko01] p.143 states that any solution of the Einstein-
Maxwell equation on the pair (g, h) defined by

el U1 U2 U3 Uq 0 0 —a O
e 0 0 U U e 0 a 0 O
1 1 2 1 B |
Uy 0 0 0 0 2uy —-a 0 d ¢
ad = has the form
U | —uq 0 0 e u 0 0 ¢ d
uz | —u2 0 —eq 0 0 O = 0,
ug | —e1 —2u; —uz 0 O — _%
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with coefficients a, ¢, d € R such that det B # 0.
Since A = —% # 0, we either have Ric, # 0, or Mg # 0 by the Einstein-Maxwell equation.
In this particular case, Mo = —Q7.B~1.Q = 0, but Ric, = AB # 0. &

Example 3.4. In [Ko01] p.43, the homogeneous pair (g, h) with index 1.1.5 is defined
by

€1 u1 U2 us Uy

(&) 0 (75} 0
up | —u 0 0
ad = 1 1
u9 0 0 0 0 u9g
0

uz | uz —€1

ug | O 0 —-ux O 0

Proposition 1.11.5, [KoO1] p.128, states that any solution of the Einstein-Maxwell equation on
(g,b) has the form:

00 a0 0 0 a 0
b ObOC,Q: 0 005’A:@7
a 0 0 —a 0 0 0 bd — c?
0 c 0 d 0 -8 0 0
where
2_ b0 2_a. (3.3)

¢ T pa— 2"
Setting a, 8 = 0 in €2, simplifies A = —ﬁ. We require A = 0, which we enforce by b = 0.

But then relation (3.3) reduces to a = 0, which kills the determinant of B. &

Example 3.5. ||B| > 0| In [KoO1] p.66, the homogeneous pair (g,h) with index 1.41.15 is
defined by

er U U2 U3 U4
€1 0 0 (51 us 0
up | 0 0 0 0 0
ad =
ug | —up 0 0 et +ug O
ug | —ug 0 —e; —ug 0 (51
ug | 0 0 0 —uq 0

Proposition 1.4'.15, [Ko01] p.144, states that any solution of the Einstein-Maxwell equation on
(g,b) has the form:

0 0 —a O 0 O 0 0

0 a 0 O 0 0 «o O d 2 B2
B= , Q= , A=0, where 14+—=—+4—.

—a 0 b ¢ 0O —a 0 ¢ 2a a d

0 0 ¢ d 0 0 -6 0
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Setting «, 5 = 0 in Q, we retrieve the relation d = —2a, but then the determinant |B| =

—a3d = 2a* is positive. Such a matrix B does not define a Lorentzian scalar product. <&

Example 3.6. In [KoO1] p.102, the homogeneous pair (g,h) with index 3.32.1 is
defined by

el €2 ez ul U2 u3 Uy
e1r| O —e3 €9 0 Uy 0 —Uu2
e2 | e3 0 0 0 U1 —U2 0
ad = | e 0 0 0 0 t —u with p € R.
up | 0 0 0 0 0 Uy 0
ug | —ug —up O 0 0 pea + uz 0
uz | 0 Ug  —Ugy —UL —Pey — U2 0 pe3 — Uy
Ug | U2 0 U1 0 0 U4 — pes 0

Proposition 3.32.1, [Ko01] p.159, states that any solution of the Einstein-Maxwell equation on
(g,h) has the form:

0 0 a O
0 a 0O
p=0, B= s =0, A=0
a 0 b O
0 00 a
The determinant |B| = —a*. If a > 0, (g, b, B) defines a Lorentzian homogeneous triple. For

v:g X g— mon pairs of elements from the basis g = (e1, s, 3, u1, ua, us, ug) we yield

el € €3 Ul U us Uy
e1r| O 0 0 0 Uy 0 —U3
ea| O 0 0 0 uUq —U2 0
0, — es 0 0 0 0 0 Uy —uq
ur | O 0 0 0 0 —u 0
U2 | Ug Uy 0 0 —2uq UL 0
uz | 0 —Us  Ug  —UL uy 2 (U3 — l’%) Uy
Ug | —Us 0 —Uq 0 0 Uy —2uq

The reader verifies easily the relations v(up, vy) = 0, and v(up, vm) = 3 [up, U] for u,v € g. The

Levi-Civita connection tensor A : g — gl(m) is determined on basis elements as

0O 0 0 0 01 0 O 0 0 0 -1
0 0 0 -1 0 0 -1 0 0O 0 0 O
Aler) = , Aeg) = , A(es) = :
0O 0 O 00 0 O 0O 0 0 0
01 0 O 00 0 O 001 0
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A(ul)*()?
0 -1 00 -1 0 -2 o0 000 -1
0 0 10 00 0 0 000 0
Auz) = » Muz) = , Aua) =
0 0 00 00 1 0 000 0
0 0 00 00 0 0 001 0

The Riemannian curvature R, : m x m — gl(m) is defined as R,(u,v) = [A(u),A(’U)]g[ —
A([u,v]) for all u,v € m. To see that R, = 0, we simply check [A(u),A(v)]g[ = A([u,v]) for all

u,v € m. Since p = 0, the commutator tensor ad|mxm simplifies to

Jat | Aur) Alug)  Aus)  Aua)
0 0 A(uq) 0
0 0 A(w) 0
M) —A(w) 0 —Afug)
0 0 A(uy) 0

[a ] |m><m Ul Uz U3 Uq [
up | 0O 0 w O A(

us | 0 0 wy 0 . Indeed, A(us
(
(

uz | —u1 —us 0 —uy A

us | 0 0 wg O A

Example 3.7. We treat the homogeneous pairs with indices 1.12.2, 1.12.8, and 1.4!.2 on the
Internet page [Ha06]. Assuming a general p-invariant Lorentzian scalar product, we display the

corresponding geometric tensors v, A, Ry, Ric,. It turns out, that Ric, =0 = R, = 0. <&
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3.2 Four-dimensional Lorentzian Ricci-flat homogeneous triples

The next lemmas summarize the 10 four-dimensional homogeneous pairs (g, ) in [KoO1] that
extend to homogeneous triples (g, h, B) so that
B has index 1 the scalar product B on m is Lorentzian
Ry, #0 not Riemannian-flat (3.4)
Ric, =0 Ricci-flat

In the next chapter, we derive the geometry of these homogeneous triples in a more general

context. We ommit the proofs of the lemmas at this point.

Lemma 3.8. Let (g, h) be a homogeneous pair with dim h = 1 from [Ko01]. Suppose
(g,bh) extends to a homogeneous triple (g,h, B) with properties (3.4). Then, (g,h,B) is of

isomorphy type g = he; X R x5 R with g = (p1,h,q1,71,2), and isotropy h = (p1). The p-
invariant Lorentzian scalar product on m = (h, q1,71, 2) is
0 0 0 a
0 a 00
B = with a,b,c,d € R and a,b > 0. (3.5)
0 0 b c

a 0 ¢ d

The derivation 6 : he; x R — be; x R with respect to (p1, h, q1,7r1) is from the following list:

Index 1.4%.9 1.41.10 1.4'.11 1.41.13
00 r 0 00 r 0 00 r 0 00 r 0
50100 010 0 010 -1 000 0
101 0 101 0 101 0 100 0
001 —p 000 —p 001 1 001 —1
Index 1.41.14 1.41.16 1.41.19
00 r 0 00 -1 0 00 —-10
5 000 0 00 0 -1 00 0 0
1 00 0 10 0 0 10 0 0
000 —1 00 1 0 00 1 0

The parameters are r,p € R with restrictions as indicated by the table below.

Index | Rico =0 = R, #0=

1.4%.9 r:w p#—%\/—4ap2—4ap+b7é0

14710 [ r=—p?> —p p(p+1)#0
1411 | r=-2

T 2a

1 _ —2a=b
14113 | r= "2

14114 | r=—1
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Lemma 3.9. Let (g, ) be a homogeneous pair with dim h = 2 from [Ko01]. Suppose
(g,h) extends to a homogeneous triple (g,h, B) with properties (3.4). Then, (g,bh, B) is of

isomorphy type g = ey x5 R with g = (p1,p2,h,q1,q2,2), and isotropy b = (p1,p2). The
p-invariant Lorentzian scalar product on m = (h, q, g2, 2) is

0 0 0 a
0 a 00
B = with a,b € R and a > 0. (3.6)
0 0 a O
a 0 0 b

The derivation ¢ : be; — heq is from the following list:

= 2.52.2 2.52.3 2.52.6
0 26 0 —42—r4s —t 010 —r—s—1 0 0000 1
00 0 —t —r—s 00 0 0 s—r 00010
sl o o0 -1 0 0 00 0 0 0 0000 O
1 0 0 ~1 0 100 0 0 10000
01 0 —2t -1 010 ~1 0 01000

We state § with respect to the basis ey = (p1,p2, 1, q1,q1). The parameters are r, s,t € R with

s,t > 0 and restrictions as indicated by the table below.

Index | Rico, =0= | R, # 0 =

2522 | r=—¢2 s>0

2523 |r=—-1 5> 0

B. Komrakov does not explicitly state the domains of the coefficients a,b,c,d € R, for
which B makes a scalar product of index 1. For that reason, we have derived the domains in
Example 1.1. The homogeneous pair with index 2.52.6 is a symmetric pair, which is part of the

classification of solvable pseudo-Riemannian symmetric spaces of index 1 and 2 in [Ne03] p.31.

In accordance with Table 3.1, the previous lemmas 3.8 and 3.9 cover all homogeneous pairs
from [Ko01], that extend to homogeneous triples of the desired geometry (3.4). Suppose Kom-
rakov’s classification is correct. Then, no other 4-dimensional homogeneous triples (g, b, B) with
dim b > 1, properties (3.4), and essentially different Lie algebra structure g exist.

In the following lemmas, we establish important isomorphies. We show that fixing B = L4

is not a restriction.

Lemma 3.10. Any homogeneous triple (g, h, B) encountered in Lemma 3.8 is iso-
morphic to (g, 5,L4) with g = be; X R x5 R, b= (p1), and 5 e, X R — by X R is a derivation.

Proof. According to the table of derivations in Lemma 3.8, we may assume § with respect to
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ey X R = (p1,h,q1,71) is of the form

00 s 0 00 = 0
0 O y Z 0 Z
J = g , x,8n,p,g €R.  Then, &= va v
X
Vb
00 np 0 o0 2

where a,b > 0 are the coefficients of the Lorentzian scalar product B in (3.5). To see this, denote
with ad the commutator of g = be; x R xx R, and ad is the commutator of g. In the spirit of

Remark 1.9, we provide a Lie algebra isomorphism « : g — g such that the diagrams

ad: @ X g — g Ly: m X o m - R
| « | « Ta !, and |l am | am T1d
ad: g X g — g B: m X m - R
110
commute. We choose o = , where ay, is adapted from Example 1.1 as
0| am
1 2—bd bd—c?
Va 0 0 2Ca3/2b va 0 0 2\/&Cb
0 = 0 0 0 Va 0 0
Om = va ) with inverse ! = va
C C
0 0 0 ﬁ 0 0 0 a

The matrix product al.B.ayy = L4 proves the right diagram. Next, we show the commuta-

tivity of the left diagram. Fix the basis g = <;51, luz, q1,71, 2> Due to the diagonal shape of «

restricted to the first four columns, the only non-zero commutator relation of ad on elements of
<ﬁ17ha (jlv%l> Is

1 1 1 y
[ﬁla le]ﬁ = ail [aﬁhaql]g = ail |:]-p17 q1:| = 7&71]1 = 7\/6}1’ =h.
va |, Va Vva
Hence, the Lie algebra generated by <]31, ;L, q1, 7*1> is isomorphic to he; x R. Concerning evalua-

tions of the commutator ad involving z, we verify that

? — bd 1 1
2, 1) = ot az, ot = al [c h C —z, aﬂ] =a ! [z, aﬂ}
g g

2% " 't a Ja

1 o
= —a o = ou

Vva

for all w € <]“)1, lvz, q1, 7*1>. In matrix notation, the last equality ﬁa‘léa =4 requires

gz 000 00 s 0 10 0 0 00 = 0
0 1 0 0 0z 0 g oﬁoo :0%0%
0 010 1 0 z 0 00 = 0 1o 20 ’
0 00 % 00 1 p 00 0 % 00 ¥

which we confirm in a straightforward computation. O
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Lemma 3.11. Any homogeneous triple (g, b, B) encountered in Lemma 3.9 is iso-
morphic to (g, , Ly) with g = bey x5 R, b= (p1,p2), and 5 ey — ey is a derivation.

Proof. The technique of the preceding proof applies here as well. We only state the key
terms. According to the table of derivations in Lemma 3.9, we assume § with respect to

ey = (p1,p2, h, q1,q2) is of the form

0 n 0 t1 ¢t 0 % 0 %1 %2
000 t t3 00 0 2 &
s=loo0o =z 0o o, xnt;eR  Then, 6=|0 0 = 0 0 ,

va
1 0 0 = O 1 0 0 % 0
01 0 —n =z 0 1 0 —% %

where a > 0 is the coefficient of the Lorentzian scalar product B in (3.6). We choose the Lie
I | 0

algebra isomorphism a : § — g as a = , where ay, is adapted from Example 1.1 as
0 | am

1 b b
7a 0 0 —55m va 00 5=

0 &= 0 0 0 Va 0 0

o = va . with inverse o' = ve
0 O 7 0 0 0 Va 0
o o o L 0 0 0 +a

Let us summarize the efforts of this chapter in a plain

Corollary 3.12. Suppose the classification in [KoO1] is correct. Then, any 4-dimensional
Lorentzian homogeneous triple with isotropy dimf > 1, and curvature R, # 0,Ric, = 0 is

isomorphic to

for either n=1,m=1,orn=2,m =0.
Proof. The corollary summarizes Lemma 3.10, and 3.11. 0

The observation motivates us to investigate these types of homogeneous triples for arbitrary
integer values n, m in the next chapter. In particular, for n = 0 we obtain Lorentzian Ricci-flat

Lie groups that are not Riemannian-flat.
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Chapter 4

Lorentzian Ricci-flat homogeneous triples

We introduce a new class of Lorentzian homogeneous triples H),. To the best of our knowledge,
‘H includes all Lorentzian homogeneous triples with geometry R, # 0, Ric, = 0 that are
mentioned in the literature. In addition, the class covers all homogeneous triples of this particular
geometry we could detect.

A homogeneous triple in H}}, is denoted by H}y, (Y, d), which we define in 4.1. In the following
section, we clarify what was previously known to us. Then, we motivate the design of the triples
in H . In Section 4.2, we derive the Levi-Civita connection, the Riemannian curvature, and the
Ricci tensor of a triple HJ%, (Y, d). The geometry depends on the parameters Y, d. The curvature
R, =0, as well as Ric, = 0 reduce to non-linear equations in the coefficients of Y, d. Finally, we
state a (complete) list of automorphisms, which map H™ (Y, ) to H”, (Y, d). The mappings are

relevant to classify the triples in H}),.

We agree on the following conventions. The basis of the (2+2n+m)-dimensional Lie algebra

gis (P1,-- s Pnshyq1y ooy Gny T, - - T, 2). We partition g into the vector subspaces
P={,...pn), h=({), a={qa,.-..q@), r=(L...,mm), z=/(2).
The Lie subalgebra is h = p. The Lie algebra decomposes as g = h & m, where
m=(h,q1,...,qnsT1,---,"m,2), equivalently m=hoqdr®z.

We definen=pdh@&qdr,andm\z=hdqdr.

For u € g, the vector uy is the projection on the vector subspace V' C g. For instance, u, € g

is the projection of u € g on (ry,...,ry,). Alternatively, uy is a vector of V. For instance, Uz
is the column vector
Un
Uny = | Uq
Uy

We state linear mappings with respect to the partition p,h,q,r,z. For instance, the linear

map ¢ : m\z — p @ h with

b C 0 b.up + Clug

U o= for u € m\z,
z T g7 zup + fL g+ g7 uy
is defined by x € R, b, f € R", g € R™, C € R™"™. 0 denotes an (n x m)-block of zeros.

Let a: g — g be a linear mapping. Then, oy, : n — n denotes the restriction of a to vectors

in n with ap.u = a(u) for all u € n. Analogous, oy, : m — m.
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Definition 4.1. | H} (Y, ) | For integers n,m > 0, let n be the (1 4+ 2n 4+ m)-dimensional Lie

algebra with basis (p1,...,Pn, Ay q1, -+, qn,T1, ..., Tm) and commutator determined by
T
Up 0 0 -1, O Up
Vh 0 0 0 0 Uh
[tn, Vn] = . h  for all u,v € n, (4.1)
Vg I, 0 Z 0 Ug
Uy 0O 0 0 Y Uy

where Y € R™*™ and Z € R™" are skew symmetric matrices. Then, H]},(Y,d) denotes

the Lorentzian homogeneous triple (g,h, B) with Lie algebra g = n x5 R, and isotropy h =

(p1,---,0n). The derivation 6 : n — n is
0 0 S—zz/2 —N'Y Up
r € R, S € R"™ gymmetric,
0 =« 0 g" Uh
Uy . , where ¢ g€ R™ N € R™*" P ¢ R™X™,
I, 0 zI,+Z 0 Ug
and zY = PT.Y + Y.P.
0 O N P Uy
(4.2)
The basis element on R is z such that [z,u] = d.u, for all w € g. The scalar product on m is
B = Loip4m with respect to the basis m = (h,q1,...,qn,T1, -, Tm, 2).
If we omit Y as in H}},(0), we assume Y = 0. &

4.1 Motivation

We are interested in homogeneous triples (g, h, B) with decomposition g = h & m that have

special geometric properties:

B has index 1 the scalar product B on m is Lorentzian
Ry #0 not Riemannian-flat (4.3)
Ric, =0 Ricci-flat

To the best of our knowledge, Definition 4.1 covers all homogeneous triples with geometry (4.3)

that are mentioned in the literature:

e [FMO5] discuss the geometry of homogeneous triples of the form H{(d). For fixed n, the

set of all such triples is a vector space.

e Any symmetric triple with geometry (4.3) is isomorphic to H{(d) for a suitable derivation
J, [CW70]. We supplement Corollary 4.12 with details.

In addition, the construction covers all homogeneous triples of this particular geometry we could
detect:

e The geometry of triples H}'(Y,d) with m # 0 has not been published yet. Due to the
non-linear constraint zY = PT.Y 4 Y.P, the set of all triples of the form H" (Y,d) for

fixed n, and m > 2 is not a vector space.
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e For n = 0, we have isotropy of dimf = 0. Then, the corresponding homogeneous space is

a Lie group with left-invariant metric.

e Suppose Komrakov’s list is a complete classification of 4-dimensional homogeneous pairs.
Then, any 4-dimensional homogeneous triple with isotropy dimbh > 1 and geometry (4.3)

is isomorphic to H1(4), or H2(J) for a suitable derivation. Corollary 4.3 gives the proof.

To get familiar with the construction, we encourage the reader to have a quick glance at
discussions 5.1, 5.2, 5.4. There, we give an algebraic, as well as geometric description of the

4-dimensional homogeneous triples that originate from Definition 4.1.

In this section, we illuminate the design of the derivation ¢ : n — n in (4.2). The aspects we
investigate are the p-invariance of the scalar product B = Loip4m, the Jacobi identity of the

commutator, and finding a reductive decomposition.

p-invariance of the scalar product

Lets consider a homogeneous triple (g, b, B) that coincides with H], (Y, §), except the derivation
0 :n — nis any derivation on n. We partition the action of the linear mapping § restricted to

elements of h as

d(up) = up foralluebh, where AeR"™™eecR" HeRY" LeR™™

Then, the isotropy representation p : h — gl(m) of h on m is determined by the commutator

relations
[up,h] =0 0 ub 0 —elup
[Up, vq] = (ul.vg)h 0 0 0 —Hu
P P as  plup) = P for all up € b.
[up, v:] =0 0 0 0 —Lup
[up, 2] = —6(up) ) 0 0 0 0

We express the p-invariance of the (0,2)-tensor B as p(up)’.B + B.p(up) = 0. Since B =

Lo ptm, the two matrix products

0 0 0 0 0O 0 O 0

0 0 0 Up 0 0 0 —Hup
p(up)t.B = , and  B.p(up) =

0 0 0 0 0 0 0 —Lup

0 fug.HT fug.LT fug.e 0 ug 0 feT.up
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reduce the p-invariance of B to

0 0 0 0
0 0 0 I, — H).u
R for all u, € R".
0 0 0 —L.up
0 uh.(In—HT) —ul.LT =2 up

e,L=0,and H =1, ‘ on the derivation § : n — n.

The equation imposes

Jacobi identity

Lets consider a homogeneous triple (g, h, B) that coincides with H}, (Y, ), where Z = 0, and the

linear mapping 6 : n — n is given by

A b C D Up
0z fT 4" Up
Uy . for all u € n,
L, i J K Ug
0 I N P Uy
where A,b,C, ..., P denote matrices and vectors of appropriate format with a priori arbitrary

entries. However, from the previous discussion we know that B = Loty iS p-invariant.
We want to assure that the commutator of the Lie algebra g satisfies the Jacobi identity.
Equivalently, we find restrictions on A,b,C,..., P, that make § : n — n a derivation. Recall

from the introduction, d : n — n is a derivation if the linear mapping
E:n—gln) with &(v)u=0.[u,v] — [d.u,v] — [u,d.v]

is the zero mapping for all v € n. In Table 4.2, we derive £(v) separately for values vp, U, Vg, Vr €
n. Due to linearity, it suffices to have £(vp) = 0,&(vn) =0, ... .

o £(vp) is the sum of the three matrices below.

5'[O7Up] _[6(0)’1}1)] _[Oaé'vp]
00 —bul 0 0 0 0 0 o 0 0 0
00 —x.vg 0 vg.In U;{.i UEJ ng —vg.In 0 vg.AT 0
00 —ivl 0 0o 0 0 0 o 0 0 0
00 —lovy 0 0 0 0 0 o 0 0 0

£(vp) = 0 for all v € n requires |b,i,l, K =0, and J = zI,, — AT | Henceforth, we assume

4 :n — nis of the form

A 0 C D Up
0 = f& g" Uh

Uy — . for all u € n.
I, O Ug

J 0
0 N P Up

[en}
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For a better overview, the matrix J has not been substituted by zI,, — AT
e {(vp) = 0, since d.[u, vy] = §(0) = 0, —[d.u,vp] = 0, and —[u,d(vn)] = —[u, xvnh] = 0 for
all u € n.

o £(vq) is the sum of the three matrices below.

8.[0, vg] —[d(0),vq] —[o, d.ug]
0O 0 0 O 0 0 0 0 0 0 0 0
xchl 0 00 — Z.A 0 —vg.C’ —’U?;.D —UE.JT 0 vg.CT —vg.NT.Y
0 0 0O 0 0 0 0 0 0 0 0
0O 0 0 O 0 0 0 0 0 0 0 0

€(vq) = 0 for all v € n results in the additional relations |CT = C, and D = —NT.Y |

o £(vy) is the sum of the three matrices below.

8.[0, vy] —[6(0), vy —[o, 8.0y]
000 0 0 0 0 0 00 0 0
00 0 olay 00 —vl. YN —olY.P 0 0 vI.DT —l'.PTY
000 0 0 0 0 0 00 0 0
000 0 0 0 0 0 00 0 0

vy) = 0 for all v € n requires |zY = PT.Y +Y.P|
&(vr) q

Reductive decomposition

So far, the discussion has shown that on the Lie algebra n with commutator (4.1), where Z = 0,

a derivation § : n — n is of the form

A C —-NTYy Up reR, A,C € RV,
x fr g’ Up C symmetric,
Uy — . , Where
I, xl, — AT Ugq g €R™ N ¢ R™*", P ¢ R™X™,
N P Ur | and 2Y = PT.Y +Y.P

(4.4)
with 0’s omitted. We define H (Y, 4) to be the homogeneous triple (n x5 R, p, Lajpntm). The
notion of H} (Y, 0) is used only to state the two following results.

If A # 0 the triple H} (Y, ) is not in a reductive decomposition. We have [h, m] ¢ m, since

[up, 2]y = —[2, uply = —0(up)y = —A.up € h.

However, the next result proves that H” (Y, ) is isomorphic to H" (Y, 4), where ¢ is an appro-
priate derivation that is in the scope of Definition 4.1. It turns out that the symmetric part of

the matrix A as well as the vector f are redundant by isomorphy.
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Lemma 4.2. H" (Y, ) is isomorphic to H (Y, 8) where 6 : n — n is defined by

S—az7/2 —-NTY Up
x g’ U ) Z=A—- AT and
Uy . , with
I, xl, +Z Uqg S=0C+AAT —x(A+ AT)/2.
N P Uy

Proof. We denote the commutator of H” (Y,8) by ad, and the commutator of H” (Y,8) by ad.
In the spirit of Remark 1.9, we show that the diagram

)

ad: g X g — g
|l « |« Ta !
ad: g X g — g

commutes for

L, 0 A 0 —f b 0 —A 0 f
1 0 0 0 1 0 0 O
o= I, 0 0 ., and o l= I, 0 0
L, O I, O
1 1
Equivalently, we prove [u,v] = a ta.wu,av] for all u,v € g, where the commutator [-,-]

without subindex denotes the action of ad. By linearity, the equation decomposes into
[Un, U]y = o Moy Un, 0. vy (4.5)

[2, tn] o = o Heu(z), o) (4.6)

for all u,v € g.

The commutator in (4.5) reduces to matrix multiplication. We confirm

at [Qn U, O U]
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The commutator in (4.6) is slightly more complicated. We have

-f —f
0 0
a~t [z, auy] = o™ 0 L amn| = a7t [z, Qi) + ! 0 , QpUn
0 0
- 1 - - O -
The first summand is
-1 _ -1
a2z, anun] = o 0.0 Uy
A c _NTy I, A
1 x fT gT 1
= aﬂ “Un
In ZL’In — AT In
N P I,
I, A A C+AA —NTY
1 T fT gT
= ) A
I, I, oI, + A — AT
1, N P
C+AAT —zA —NTY S—=x7/2 —NTY
x fr 9" x fr 9"
fr .un = Un
I, xl, + A— AT I, zl, + 7
N P N P

The second summand simplifies to

—f T
_f 0 _In
0 0 0
=a ! |a, Un, 0 = ( .an.un)h
0 1, Z
0
0 Y
- O -
T
0 1, A 0 0
0 1 0o —fT o
= ( . .un)h = f Un
0 1, 0 0

The sum of both matrix expressions confirms [z, un] 5 = o™ H(2), an.ug] = dupforallueg. O
The next result is a mere application of the previous lemma.

Corollary 4.3. Suppose the classification in [Ko01] is correct. Then, any 4-dimensional Lorentzian
homogeneous triple with isotropy dimbh > 1, and curvature R, # 0, Ric, = 0 is isomorphic to
H1(5), or HE(5).
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Proof. According to Lemma 3.10, any such homogeneous triple with 1-dimensional isotropy is
isomorphic to (g1, h1, L4) with g1 = be; x R x5, R, h1 = (p1). According to Lemma 3.11, any such
triple with 2-dimensional isotropy is isomorphic to (g2, h2, L4) with go = bey X5, R, ha = (p1, p2).

The lemmas state the derivations as

0 n O tl tQ
0 0 s O
0 0 0 ty t3
0 z 0 g
01 = , and d=] 0 0 z 0 0 with coefficients in R.
1 0 =z O
10 0 = O
0 0 n p
01 0 —n =«

The derivation d; is in the scope of Definition 4.1. The triple (g1, b1, L4) coincides with H1(d1),
whereas (g2, ha, Ls) coincides with H2(dy). However, according to the previous lemma, H2 ()
is isomorphic to 'H(Q)(Sg) for an appropriate derivation ds.

As a result of Section 3.1, no effective 4-dimensional Lorentzian homogeneous triple (g, b, B)

with isotropy dim fh > 2, and geometry R, # 0, Ric, = 0 exist. O

4.2 Geometry

In this section, we derive the geometry of the homogeneous triple H! (Y,d). The associated

geometric tensors v, A, Ry, Ric, depend on the coefficients of Y, .

Lemma 4.4. The homogeneous triple H}, (Y, ) determines the tensor v : g x g — m as

T
Up 0 0 I,/2 0 Up
( ) Uh 0 0 0 0 un |,
v(un, V) = . .
Vg I,/2 0 «I, NT /2 Uqg
Uy 0 0 N/2 (P+PT))2 Uy
Up
0 x/2 0 gt /2 0
Un
~I,/2 0 —xI,/2 ~NT/2 0
v(u,z) = | ug
0 0 0 —(Y+ P2 —g
Uy
0 0 0 0 —
Uz

for all u,v € g.

Proof. Recall, v is defined implicitly by 2B (V(u,v), wm) = B(um, [w,v]m) + B([w,u]m, vm) for
all u,v,w € g. We compute v(uy,vy) in Table 4.3, while v(u, z) follows from Table 4.4. By

symmetry and linearity, both evaluations determine v : g x g — m. ]
Definition 4.5. We define P : R*™™ — gl(m) and Q : R x R*™ x R(++m)x(n+m) _, g((m) as
0o ff o z g' 0
Pfy=10 0 —f |, and Qzg9X)=| 0 X —g
0 0 O 0 0 -z
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Lemma 4.6. The homogeneous triple H,(Y,d) determines the Levi-Civita connection A : g —

gl(m) as

Up
I, 0 «l,+2Z/2 NT /2 u
Alun) = P " n+Zf / 1™
0 0 N/2 (P+PT+Y)/2 Uq
Uy
z 0 g7 0
0 Z/2 —NT/2 0 Z/2 —NT/2 0
Az =0 7 / / _ / /
g N/2 (P-Y — PT)/2 0 N/2 (P-Y—-P")/2 —g
0 0 0 —
for all u € g.

Proof. The formula for the Levi-Civita connection is A(u).vm = 3[u, v]m+v(u,v) for all u,v € g.
The previous lemma provides the values for v(u,v). We yield A in a straightforward computation
carried out in Table 4.5. ]

Remark 4.7. Let z € R, f,g € R"t" and X € R+m)x(+m) gkew symmetric. We have
[P().P(9)] =0 )

[P(f), P(g)] o = 0 1s a consequence of (1.16). The second commutator computes as

P(f)-Qx, g9, X) = Qz,9,X).P(f) = [P(f (x,9,X

0 ff'xX —fTyg 0 xfT —gT.f 0 x1n+m+X) 0

0 0 zf 0 0 —X.f 0 (xLyim + X).f
0 0 0 0 0 0 0 0

Lemma 4.8. The non-zero evaluations of the Riemannian curvature tensor R, : m x m — gl(m)

induced by the homogeneous triple H}), (Y, §) are determined by

1 C Cqr U
Ro(u,z) = =P damer for all u € m, (4.9)

4 Crgq Crr Ur
where
Cqq=4S +3NT'.N+ 2.7
Coxr =2(P+ PN (P —xL,)+ (Y +PT —P).(Y + P+ P") —2PTY - N.NT
Cqr = NT.(3P + P - 3Y) — (221, + Z).NT

Crq=Cap=@BP" +P+3Y).N—N.(2zl, — Z).
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Proof. The Riemannian curvature tensor satisfies

Ro(u,v) = [A(w),A(v)]  — A([u,v]) for all u,v € m.

gl

® Ro(Um, V) vanishes for vectors u,v € m\ 2. According to Lemma 4.6, A(un;) = P(fu),
and A(vn,) = P(f,) for appropriate fy, f, € R*™™. But then [A(um\z),A(vm\Z)]g[ = 0 by the
previous remark. Furthermore, [tugm,, vm,] € (k) so that A([um,, vem,]) = 0.

e Table 4.6 yields Ro(um,2) as

Uq

1
Ro(ume:2) = 7P | (= A1+ 4s), for all u € m.

Uy

Up to the factor 4, the matrix —A; is the contribution of [A(um\z),A(z)}g[ , and Ay is the
contribution of —A ([, z]). Table 4.7 simplifies the sum —A; 4+ Ap and partitions the matrix
as in (4.9).

e Skew symmetry of the Riemannian curvature tensor gives Ry(z,2) = —Ro(z,2) =0. O

Lemma 4.9. The non-zero evaluations of the Ricci tensor Ricy : m x m — R induced by the

homogeneous triple Hj), (Y, 0) are determined by
1 1
Rico(z,2) = — tr (45 +3NT".N +2.2) - i (2(P+ P").(P —zI,)+Y.Y — N.NT) (4.10)

Proof. The Ricci tensor satisfies Rico(u,v) = tr (w +— Ro(w,u).v) for all u,v € m.

First, we obtain Rico(um,,v) = 0 for all u,v € m.

Rico (U, v) = tr (w — Ro(w,um,).v) = tr (0 — Ro(wg, Uy, ).v)

By symmetry, Rico(u,vy,) = 0 for all u,v € m.

What remains is the computation of

Rico(z, 2) =tr (w — Ro(w, 2).2)

The terms tr Cq,q and tr Cyr are derived in Table 4.8 and match those in (4.10). O



44

Remark 4.10. According to [KN69] p.204, the holonomy algebra of a homogeneous triple is
given by
¢+ [A(g), cJgr + [A(g), [A(g), c]]gt + - - . (4.11)

where ¢ = {Ro(u,v) : u,v € m} is the set of all curvature endomorphisms.

The holonomy of H} (Y,0) is abelian. To see this, we recall the results on the Levi-Civita
connection and the Riemannian curvature. Due to the commutator relations (4.7), (4.8), all
summands in (4.11) are subsets of {P(f) : f € R*"™™}. We have [P(f),P(g)]g = 0 for all
f.g € R™. o

Special instances

Previously, we have derived the geometry of the homogeneous triple H}, (Y, d). Thus, we easily
obtain two corollaries that specialize on the geometry of triples of the form HY, (Y, §), and H2(5).
A homogeneous triple H?, (Y, d) corresponds to a Lie algebra with Lorentzian scalar product.

The set of all such triples is not a vector space due to the non-linear relation Y = PT.Y +Y.P.

Corollary 4.11. | H9,(Y,d) | Let n be the (1+m)-dimensional Lie algebra with basis (h, 1, ..., 7m)

and commutator determined by

T

v 0 O U
[tn, V] = b ) . "l foran u,v € n,

Ur 0 Y Up

where Y € R™*™ is a skew symmetric matrix. The homogeneous triple (g, {O},B) with Lie
algebra g = n x5 R, isotropy {0}, scalar product B = Lay,, with respect to (h,r1,...,7m,2),
and derivation é : n — n as

r g Uh r€R, geR™ PeR™*™

Uy . ,  where
0 P Uy such that zY¥ = PTY +Y.P

coincides with H2 (Y, §). For such a triple, the non-zero evaluations of the Riemannian curvature

tensor R, : g X g — gl(g) and the Ricci tensor Ric, : g X g — R are determined by
1
Ro(u,2) =+ P (2P +P").(P-aly)+ (Y +P" —P).(Y + P+ P") - 2P"Y) ;)
1
Rico(2,2) = = tr (2(P + PT).(P - xI,) + YY)

for all u € g. <&

The following corollary specializes on the geometry of the homogeneous triple H{(4). To
the best of our knowledge, any homogeneous triple published with geometry (4.3) prior to our
thesis is of type H{(d). For a complete discussion see [FMO05], who also state the left-action on

the corresponding homogeneous space.



45

Corollary 4.12. |H{(0) | Let n be the (1 + 2n)-dimensional Lie algebra with basis (p1, ..., pn,

h, qi,...,qn) and commutator determined by

T
Up 0 0 —I, up
[Un, 0] = | vy 0 0 0 up, |h forall u,v €n,
Vg I, 0 Z Ug

where Z € R™" is a skew symmetric matrix. The homogeneous triple (g,bh, B) with Lie

algebra g = n x5 R, isotropy h = (pi1,...,pn), scalar product B = Loy, with respect to

m=(h,q1,...,qn, 2), and derivation 6 : n — n as
0 0 S—zZ/2 Up
Uy — 0 = 0 | wu, |, wherez€eR, and S € R™" symmetric
I, 0 «xI,+Z Uq

coincides with H{j(0). For such a triple, the non-zero evaluations of the Riemannian curvature

tensor R, : m x m — gl(m) and the Ricci tensor Ric, : m x m — R are determined by
Ro(u,z) = +P ((S+ Z%/4) uq), and Rico(z,2) = —tr (S+2Z?/4) forallu € m.

<&

In case x,Z = 0, the triple H{ () is moreover symmetric. According to [CW70], any sym-
metric triple with geometry (4.3) is of this form. We have

R,=0 < S=0, and Ric,=0 < trS=0,

which is also well known from [Ne02].

4.3 Isomorphy

For integers n, m > 0, we denote with H}!, the set of all homogeneous triples H}» (Y, d) that are
in the scope of Definition 4.1. Isomorphy of homogeneous triples is an equivalence relation. A
moduli space such as

M7, :="H}, [isomorphy

typically has complicated topology. However, the next lemma is an important utility to classify
the triples in H},.

Lemma 4.13. Consider the definitions in Table 4.1. The linear mappings
TP(\), TYQ),T"(R), T*() : g — g for parameters A € R*, Q € O(R"), R € O(R™), n € R™

are isomorphisms between the homogeneous triples H” (Y, ) and H” (Y, 9).
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Table 4.1 : We define the linear mappings T*(\), 79(Q),T"(R),T*(n) : ¢ — ¢. Lemma 4.13
proves that the triples H2 (Y, ) and H”, (Y, 4) are isomorphic.

y Y
o o .
Z
S—x7/2 —-NTY
T g” Y
Id:g—g 0=
I, I, +Z Z
N P
Th : R* — GL(g), A —
M,
\ (S —27/2)/\* —NT.Y/)\?
x/A g’ /2 Y/A
I
I, (1, + Z)/ A Z/A
I
N/A P/\
1/X
T9: O(R") — GL(g), @ —
Q
QT.(S—27/2).Q —QT.NTY
1
x ' Y
Q T T
; I, zl, +QT.Z.Q QT.Z.Q
" N.Q P
1
T : O(R™) — GL(g), R —
I,
S—xzZ/2 —NTY.R
1
! T g'.R RTY.R
! I, al, + Z Z
R
RT.N RT.P.R
1
T :R™ — GL(g),n —
I, NT.q
. . S—aZ/2 —-NTY
1 no—ntn/2 r oo
. T gt +nt. (2, +Y — P) Y
" I, al, + 7 Z
Im -n
N P
1
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Proof. Denote with ad, and ad the commutators of H” (Y, ), and H™ (Y, ) respectively. In the

spirit of Remark 1.9, we show that both diagrams commute

)

ad: g X g — g Lotpym: m X m - R
| « | « Ta"t , and | am |l am 1 1d
ad: g X g — g Lotpym: m X m - R

for a = T®(\), T9Q),T"(R),T%(n), and all parameters A € R*, Q@ € O(R"), R € O(R™),
n € R™.
e First, consider |a = T%(n) | with n € R™. The linear mapping is defined in Table 4.1 as

I, NT g I, —NT g
1 nt —n'n/2 1 —n" —n'.n/2
a= I, , and o l= I,
Im -n Im n
1
We have to show [u, v] ; = o v, awv] for all u, v € g, where plain [, -] denotes the commutator

with respect to ad. By linearity, the equation decomposes into
[Un, Un]zq = oz_l[ozn.un, QU Uy (4.12)
[z, un) ;g = o Ha(z), o] (4.13)
for all u,v € g. The commutator in (4.12) reduces to matrix multiplication,

a_l[ozn.un, Qn.Up] = ...

0 _In In
0 1 n’
= (vn az un)a(h)
I, Z I
Y I,
In 0 _In 0 _In
1 0 0
= (T ug)h = (vl Un)h
I, I, VA I, A
n I Y Y

The commutator in (4.13) is slightly more complicated. We have

NT.q NTp
—n".n/2 —n".n/2
a [az, quy] = at 0 Jomn| = a7t [z, am.un] + a~t 0 , Q. Un
-n -




The first summand a1 [z, a.uy) is

—1
L=y 0.0 Uy
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S—xz7/2 —NTY I,
. x g’ 1 n"
=0, . Ay
I, al, + 7 I,
N P I,
I, S—xz7/2 -NTY
1 —T]T T gT + a:nT
= An
I N P
S —xZ/2 ~NTY
r -n'.N ¢gT+anT —nT.P
= A,
I, xl, +7
N P
whereas the second summand simplifies to
[ —-NT.g 1 T
- /o fNT.n 0 I,
n.n
_1 n".n/2 0
=« Q. Uy, 0 = ( .an.un)h
0 I, A
n
n Y
| 0
T
0 I, 0
0 1 nT 0 n'.N nTY
= ( .un)h = AUy
NTp I, 0
YT.n I, 0

The results confirm [z, un] 5 = o™ Ha(2), an.un] = d.uy for all u € g.

e For

a=T"N),T9Q),T*(R)

we suspend similar transformations to Table 4.9, and Table

4.10. However, the computations are carried out in detail.

The right diagram is a consequence of Remark 1.2. 0

4.4 Auxiliary calculations
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Table 4.2 : We yield the linear mapping & : n — gl(n) defined by £(v).u = d.[u, v]—[d.u, v]—[u, §.v]
for v € p, q, r respectively.

b b.vg
T x T z.ol
e 4.fu,vp] =6 [uq,vp] = 0. (—(vp.uq)h) =—| |(pug)=—| L+ |t
i i.vp,
l l.vg
[ A b C D Up ] Up
0 z fT 47 Uup, Up
—[6.u, vp] = — ) , Up :(vg.< I, i J K > )h
I, + J K Ug Ug
i 0O I N P Uy ] Uy
Up Awvp
Uh 0 T T AT
—[u,0(vp)] = — , = — (v In-up — vy . A" ug)h
Ug I,.vp
L Ur O 4
o 0.[u,vg] = 0. [up,vq] =0 ((vz;.up)h) =z (vg.up) h
[ A 0 C D Up ] Up
0z fr g" up, up,
[0.u,vq] = , Vg :—(vg.(A 0o C D). )h
I, 0 J 0 Ug Ug
i 0O 0 N P Uy | Uy
[ Up C.ug ]
up, fTog T T ~T T NT
—[u,6(vg)] = — , =—(vq-J up —vy-Clug+vy N' Your)h
Ug J.vg
|\ Ur N.vgq |
o O.[u,vp] = 6. [ur,ve] = 6. (vf Your)h) = (v aYuy) b
[ A 0 C D Up ] Up
0z fr g" up, up,
—[0.u, vp] = — - ) U :—(vff-Y-(o 0 N P>. )h
I, 0 J 0 Ug Ug
\oonN P w ) r
[ Up D.vg ]
Uh 9" vq T T T pT
—[u,6(ve)] = — , = —(—vg-D"uq+vg.P" Your)h
Uq 0.vq
|\ Ur P.ug |
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Table 4.3 : First, we write out the commutator [w,uy]m. Then, we obtain v(uy,vy) via the
relation 2B(1/(u,v), wm) = B(um, [w,v]m) + B([w,u]m, vm) for all u,v,w € g.

[wa Un]m :[wna Un]m + wz((s-un)m

T
Up 0 —I, Wp T g Up
U 0 w I xl, + 7 U
_ h h h + w, n n h
Ug 1, VA Wq N P Ug
Uy Y Wy 0 0 0 0 Uy
Wp
ug 0 uz;.Z — ug uly rup +ul.g
Wh
0 0 0 0 up+ (2l + Z).uqg
= w
0 0 0 0 N.ug + Py B
Wy
0 0 0 0 0
Wy
2B (V(Um 'Un)a wm) =B ((un)rm [wma Un]m) + B([wma un]tm (Un)m)
T
Uh 0 vg.Z — 1};1; UI,T.Y TUh + gT.v,r Wh
U, 0 0 0 vp + (zl, + Z).v w
— + q .Ln_l’_m. P ( ) q . q
Uy 0 0 0 N.vg + Py Wy
0 0 0 0 0 Wy,
T
Uh 0 uZ.Z — ug uf.Y TUp + gT.ur Wh
) 0 0 0 up + (2, + Z).u w
NI ot @t D | | wa
Uy 0 0 0 N.ug + Py Wy
0 0 0 0 0 Wy,
T
Up 0 0O 0 Wh
_ Uqg 0 0 0 wvp+(xly,+ 2Z).vg Wq
Uy 0 0 O N.vg + Py . Wy
0 0 0O 0 Wy,
T
U 0 0O 0 Wh
n Vg 0 0 0 up+ (2, +2)ug Wq
U 00 0  Nug+Pu | owe
0 0 0 O 0 Wy,
T
Up 0 0 I,/2 0 Up
Un 0 0 O 0 Uh
B(v(un, vy), wm) = . . . Wy
Vg I,/2 0 «zI, N*/2 Ug
Uy 0 0 N/2 (P+PT))2 Uy
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Table 4.4 : First, we write out the commutator [w, z]y. Then, we obtain v(u, z) via the relation
2B(v(u, 2), wm) = B(um, [w, z]m) + B(z, [w, u]w) for all u,w € g.

w
0z 0 4T o0 P
Wh
I, 0 z+Z 0 O
[w7 Z]m [27 w] _(6 wn)m = - Wq
0 O N P 0
Wy
0 O 0 0 O
Wy
2B(v(u, 2), wm) =B(tm, [w, 2lm) + B(z, [w, u]m)
=B (um, [, 2]m) + uzB(z, [w, z|m) + B(z, [w, un|m)
=B(um + Uz, [w, 2]m) + B(z, [w, un]m)
=B(um + tg, [w, z]m) + B(z, [w, un|n)
:[w7 Un]h + B(um + Ug, [w7 z]m)
=+ ( ug 0 ug.Z — ug ullY aup +ullg ) W
T
Un 0 =« 0 g’ 0
Ug I, 0 zI, +Z 0 O
— .Ln+m. w
Uy 0 O N P 0
2, 0 0 0 0 0
T
Up 0O 0 -1, 0 O 0 O 0 0 0
Uh 0 0 O 0 =z 0 O 0 0 O
=| uq L, 0 2 00 |-|5L 0 a,b+z o of|w
Uy 0 0 0 Y g 0 0 N P 0
Uy, 00 0 O 0 2z 0 297 0
T
Uup 0 —I, 0 0
Uh 0 0 0 x
v(u, 2)T. By =5 | ta 0 -z, 0 0 | Wm
Uy 0 -N Y-P g
Uy, —2z 0 —2¢7 0
u
0 0 0 0 -2 ?
Un
1 —I, 0 —=xI —N 0
v(u, 2) §Ln+m+2 " " Uq
0 0 Y-P -2
Uy
0 =« 0 g’ 0
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Table 4.5 : We derive the Levi-Civita connection A : g — gl(m). It turns out, that A(h) = 0.
The identities below hold for all u,v € g.

Aun)-(vn)m :%[“m (Vn)m]m + v (Un, (Vn)m)

T
0 0 —1I,/2 Up
v 0 U
N N
Vg I,/2 Z/2 Uq
Uy Y/2 Uy
T
0 0 0 I,/2 0 Up
Uh 0 0 0 0 Unh
+ : . h
Vg I,/2 0 zI, NT/2 Ug
Uy 0 0 N/2 (P+PT))2 Uy
T
Uh 0 O 0 0 Up
Vg I, 0 zI,+Z/2 NT/2 w |
w | |00 N2 (P+PT4Y)2 | | ug
Uy, 0 0 0 0 Uy
Due to the A(u)-invariance of B = Ly 42 for all u € g, we obtain
B((vn)m, Alun).z) = = B(z, Aun).(vn)m) = —(A(un).(vn)m)n
(va) L. B.A(un).2 = — A(tn).(vn)m
0 0 0 0 Up
L, 0 zl,+Z/2 NT/2 Up
Auy).z = — .
0 0 N/2 (P+PT +Y)/2 Uq
0 0 0 0 Uy
It remains to derive the linear mapping A(z):
1
A(2).vm :5[2, Um|m + V(2,0m) = 5(5.(vm)n)m + v (v, 2)
x/2 0 g’/2 0 x/2 0 g’ /2 0
( 0 zI,/2+Z/2 0 0 N 0 —uxl,/2 —NT/2 0 )
= Um
0 N/2 P/2 0 0 0 —(Y+ P2 —g
0 0 0 0 0 0 0 -z
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Table 4.6 : We yield the essential evaluation of the Riemannian curvature Ro(um,,z) for all

u € m. First, we specialize the expressions of the Levi-Civita connection to

I, +272/2 NT/2
M) =P | | © / / | Y
N/2 (P+PT+Y))2 Uy
0 Z/2 —NT/2
s =ofe| ) (7 /

g N/2 (P-Y —PT))/2

This allows us to write

Ro(um, 2) =

:[A(um\z)> (Z)]g[ A([um\zaz])

0 S—27/2 —NTY
u
I, 0 xl,+2/2 NT /2 > 0 g7 "

8

Uq

—_P zl, + Z/2 _NT/2 xl, + Z/2 NT/2 Ug
a N/2  al,+(P-Y-PT)2 ) N2 (P+PT+Y)2 )\ w

0 0 N/2 (P+PT+Y))2

o

xl, + 7 0
N P

Uy

o

The matrix products in the previous sum expand to
Ay [ Bt 202 —NT/2 al, + Z/2 NT /2
1 = .
N/2 zl, +(P-Y —PT)/2 N/2 (P+PT+Y)/2
_ 4(xl, + Z/2)? = NT.N 2(xl, + Z/2)NT — NT(P+ PT +Y)
ON(zI, + Z/2) + 2z, + (P =Y — PT)/2).N Ter ’

where Ty = N.NT + 2(x1,,, + (P =Y — PT)/2)(P+ PT +Y), and

S—a7/2 —-NTY
I, 0 zl,+2/2 NT /2 0 g’
A2 =4 .
0 0 N/2 (P+PT+Y)/2 zl, +Z 0
N P
| 4S8 =227 + A2l + Z/2).(x], + Z) +2NT.N  —4ANT.Y +2NT.P
ON.(zI, + Z)+ 2(P+ PT +Y).N 2P+ PT+Y)P |

Then, the expression we are looking for is

1 U
Ro(un,2) = 7P | (= A+ 4z). |

Uy
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Table 4.7 : We have defined the matrices A1 and Ay in Table 4.6. A; and A determine the
Riemannian curvature tensor. Below, we simplify each of the four components in the expression

—Aq + As with respect to the decomposition
Aty | Cou Car
Crq Crr
Combining the components of A; and As by pairs, we obtain
Cqq=— 4l +Z/2)> + NU.N +4S — 2207 + 4(zxI, + Z/2).(xI,, + Z) + 2NT.N
=4S + 3NT N + 4(z1,, + 2/2) (I, + Z — I, — Z/2) — 227
=4S + 3NT.N 4 2(xI, + Z/2)Z — 222
=4S +3NT.N + 2.7
Cqr = — 22, + Z/2)NT + NT(P 4+ PT +Y) —4NTY 4 2NT.P
= —2(xl, + Z/2)NT + NT(P + PT +Y — 4Y +2P)
=NT.(3P + PT —3Y) — (221, + Z).NT
Crr=—NNT -2zl +(P-Y - P)/2).(P+PT +Y)+2(P+PT +Y).P
=— 22l +P-Y-POH.Y+P+P)+2(Yy+P+PT)P-NNT
=—2tY —22(P+P) - (P-Y-PO.(Y+P+Pl)+2(Y + P+ P").P-NNT
=-2PT Yy —2v.P - 2z(P + PT) + 2Y.P+2(P + P").P
~(P-Y-PH(Y+P+P")-NNT
=2(P+ P (P —xL,)+ (Y +PT - P).(Y + P+ P") —2PT Y - N.NT

Crq=CI. = (3PT + P +3Y).N - N.(2zI, — Z)

Table 4.8 : Recall, the trace of the product of a symmetric and a skew symmetric matrix is zero.

Keeping this in mind, we simplify the expressions that determine the Ricci curvature.

tr Cqq =tr (45 + 3NT.N + Z?)

(
tr Cpr =tr (2(P + PT).(P — 2I,) + (Y + PT — P).(Y + P+ PT) —2PT.y — N.NT)
=tr (2(P+ PT).(P —xI,,) + (Y + PT — P).Y —2PTY — N.NT)
=tr (2(P+ P?).(P —2I,) +Y.Y — (P + P).Y — N.NT)
=tr (2(P+ P").(P - 2L,) +Y.Y — N.NT)



Table 4.9 : Denote with X, X the matrices defined by [un, va],q = (vF X un)h, and [un, va]

(U;F X .un)h respectively. We observe that the relation [un,vn]
u,v € g reduces to the equation (af . X.an)a ! (h) = Xh.

Let |a = T®()\) |and A € R*. We confirm
0 _In )\I'IL
0 A
ol X.on/\=al. /A
I, Z I,
Y I,
A, 0 — I,/
I, I, Z/A
I Y/A
Let |a = T9Q) | and Q € O(R™). We confirm
0 _In Q
0 1
ol X.on =al.
I, z Q
Y Im
QT 0 —@Q 0
_ 1 0 _ 0
Q" 1o ze I,
IW’L Y
Let | = T"(R) |and R € O(R™). We confirm
0 -I, I,
0 1
ol X.an =al.
L, Z I,
Y R
I, 0 -1, 0
I, I, zZ I,
RT YR

95

q =

a~ ! [an. g, an.vy] for all

|
Pc

Y/A

I
P

I
e

RTY.R
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Table 4.10 : Finally, we confirm that [z,us] s = a ! [az, auy] for all u € g. In all instances

a=T2%\), TYQ),T"(R), this relation is equivalent to a simple matrix equation.

Let |a = Th())

we verify as:

and A € R*. Then, [z, u]; = a™! [z, auy) reduces to ayt.d.an/A = 5, which

I./A S—x2/2 —NTY AL,
1/A T A
/ . ! g . /X
I, I, al, + 7 I,
(S—aZ/2)/x —NT.Y/X (S —aZ/2)/A2 —NT.Y/\2
o x 9" /A /A g" /N
= =
" I, (I, + Z)/\ I, (I, + Z)/\
N/ P/\ N/ P/

Let|a = T9(Q) |and Q € O(R™). Then, [z,un] 5 = o' [az, au,] reduces to oy '.6.00 = 5, which

we verify as:

QT S—xZ/2
1 T
Q" | L xl, +Z
I, N
(S —22/2).Q —NT.Y
=l ! g
Q (xln+ Z2).Q
N.Q P

~NTY Q

g" 1

P I,

QT.(S—22/2).Q -QT.NT.Y
T g7
QT .(zI, + 7).Q

N.Q P

s

Let | =T"(R)| and R € O(R™). Then, [z, un)y = o ! [z, auy] reduces to ayt.d.om = 5,

which we verify as:

1 T
I, |1, eI, +Z
RT N
S—27/2 —NTY.R
] x 9" .R -
=, =
I, zl, + 7

N P.R

NTY I,
g" 1
L,
P R
S—xzZ/2 —-NTY.R
x 9" .R
1, zl, + 7
RT.N RT.P.R



o7

Chapter 5

Applications

We benefit from the work carried out in the previous chapter. First, we investigate the geometry
of all 4-dimensional homogeneous triples H], that are in the scope of Definition 4.1. According
to dimm = 2 4+ n + m = 4, this concerns the triples in Hg, H%, and H%. In particular, we derive
the constraints on the parameters of the commutator to yield R, # 0, and Ric, = 0.

Lemma 4.13 enables us to classify the triples in H},. In Section 5.2, we carry out several
classifications in low dimensions. Thereby, we confirm the classification of homogeneous triples
in H}, which was initially stated in [DK95].

5.1 Four-dimensional Lorentzian Ricci-flat homogeneous triples

We investigate the geometry of the 4-dimensional homogeneous triples in H9, H1, and H3.

Discussion 5.1. | HJ | Let n be the 3-dimensional Lie algebra with basis (h,71,79) and commu-

tator tensor determined by

h 1 (]
h{0 O 0
[7 ]n = fOI' Yy € Rv
ry | 0 0 —yh
ro| 0 yh 0O
or equivalently,
T
v 0 0 U 0
[tn, V] = n . . h h, for Y = Y
Uy 0Y Uy -y 0

The Lie algebra of a homogeneous triple (g, b, L4) € HY is g = n x5 R. The isotropy is h = {0}.

We consider derivations ¢ : n — n of the following form

T g1 92
0= 0 pi1 pi2 with coefficients z, g;, p; ; € R,
0 p21 poo
or equivalently,

T

T g g1 P11 P12

6= ,  Where ¢g= , P=
0 P g2 D21 P22

As derived in the previous chapter, the Jacobi identity requires Y = PT.Y + Y.P. Explicitly,

0 wyz )\ [ —yp21 ypia I 0 y(p1,1 + p2,2)
—yz 0 —Yp2,2  Yp1,2 —YpPi,1 —YP1,2 —y(p1,1 + p2,2) 0
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The matrix equation reduces to the implication ’ Yy # 0= 2 =p11+ p22| Keeping this relation

in mind, the commutator tensor on g compiles as

h 1 T9 z
hl O 0 0 —xh
ad= r | 0 0 —yh —g1h —p1ar1 — p2im2
ro | 0 yh 0 —g2h — p12r1 — p22ro
z|xzh gih+piir1 +p2ire goh + prory + poore 0
The algebra with y = 1, p12 = 1, po1 = —1 and all other coefficients zero is the oscillator

algebra.

The scalar product Ly is with respect to the basis g = m = (h,r1,r2,2) and induces the
geometry of the homogeneous triple. We apply the results of the previous chapter to obtain the
geometric tensors v, A, R,, Ric,.

Adapting Lemma 4.4 to our situation gives the (1,2)-tensor v : g x g — g as

T
( ) Uh 0 0 Up "
V(Un, Un) = . .
Uy 0 (P+PT))2 Uy
/2 g /2 0 Un
vi,2) = 0 Y +PT)/2 —g || w
0 0 —x Uy

for all u,v € g. To avoid fractions, we summarize these relations as

h 1 T9 z
h| O 0 0 xh
2v="r |0 2p1ah (P12 +p2,1) gih —piar + (y — p12) 12
re | 0O (P12 +Dp21)h 2p2 2h goh — (Y +p2,1) 1 — P22
z|ah gih—piari+(y—pi2)re g2h— (Y +p2,1) 71 — p2are —2xz — 2g17T1 — 29272

Applying Lemma 4.6 yields the Levi-Civita connection A : g — gl(g) as

A(un):P(( 0 (P+PT+Y))2 )un) for all u € g, and

T g” 0
Az)=1 0 (P-Y-PT))2 —g
0 0 —x
The matrices sum to
P+PT4+Y = P-Y - PT =
2p1.1 P12 +p21+Yy 0 P12 — Y — P21

P12t P21 —Y 2p22 P21+ Y — P21 0
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Definition 4.5 declares P, the purpose of which is to abbreviate matrices of special form. Ex-

plicitly, the Levi-Civita connection on basis elements of n is A(h) = 0,

2A(ry) = 2A(rg) =
0 2p11 pi2+p21—y 0 0 pio2+po1+y 2pa2 0
0 0 0 —2p1 0 0 0  —y—pi2—p21
0 0 0 Y —Dpi2— P21 0 0 0 —2p22
0 0 0 0 0 0 0 0

According to Corollary 4.11, the non-zero evaluations of the curvatures R, : g x g — gl(g)

and Ric, : g X g — R are determined by
1 T T T T
Ro(u,2) = +1P (2(P+P).(P—aly)— (P-Y -P")(Y+P+P")-2PY) u,)
1
Rico(z,2) = — tr (2(P + P").(P - 21,) + YY)
for all u € g. A straightforward computation yields

1 c1+c c
Ro(u,z) = =P b ? Ay

4 (&) Cl1 —C3
Rico(z,2) = —c1/2
with coefficients c1, ¢co, c3 as
c1=—y>+2p11(p11 — =) + 2p2.2 (P22 — ) + (P12 +P2,1)2

c2 =2p11 (2p12 —y) — 22 (pr2 +p2,1) +2p22 (¥ + 2p2,1)
c3=2(p1a(p11— ) +p2a(® —p22) + (y—pi2+p21) (P12 +p21)).

For convenience, we expand the curvature endomorphisms R, (u, z) = iP ... on basis elements

0 c1+c3 co 0 0 Cy C1 —C3 0
1 0 0 0 —C1 — C3 1 0 0 0 —C2
RO(Tlaz) = Z 5 RO(TQVZ) = Z
0 0 0 —C2 0 0 0 C3 —C1
0 0 0 0 0 0 0 0

The curvature identities (1.6) imply Ro(z,71) = —Ro(r1, 2), and Ro(z,7m2) = —Ro(re, ). All
other combinations of basis elements u,v € {h, 71,72, 2} yield Ro(u,v) = 0.
However, if we have to substitute x = p11 + p22 due to the Jacobi identity. Then,

the entries of the curvature tensor simplify to

c1 =~y + (P12 +pa1)® — 4p1ipas
c2 =2y —p12+p21) (P22 —Pp1,1)
c3=2(y—p12+p21) P12+ p21).
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Otherwise , so that

Cc1 = 2271,1(]91,1 — x) + 2p2 9 (p2,2 — 96) + (p1,2 +P2,1)2
c2=202p11—x)p12+2(2p22 —x) P2
e3=2(pri(p11 — o) + paa(z — pao) —plo+p3,) -

Relative to the basis m = (h, q1,71, 2), Ric, is the following bilinear form

T

Rico(u,v) = v*. o for all u,v € m.

0
—c1/2

o o o O
o o o O
o o o O

In any case, the equation Ric, = 0 < Ricy(z,2) < ¢1 = 0 reduces to a quadratic homogeneous

polynomial in the coefficients of the commutator. <&

We conjecture, that the previous discussion covers all 4-dimensional Lie algebras with scalar

product of index 1, and curvature R, # 0, Ric, = 0.

Discussion 5.2. |Hi| The Lie algebra of a homogeneous triple in H} is g = by x R x5 R

with basis (p1,h,q1,71,2). The distinguished Lie subalgebra is h = (p1). The derivation § on
n = be; X R is of the form

0 0 s O
0 z 0 ¢
0= , n,g,%,p, 8 ER. (5.1)
1 0 = O
0 0 np

The Lorentzian scalar product is L4 with respect to m = (h,q1,71,2). The scalar product
induces the following geometric tensors. According to Lemma 4.8, the non-zero evaluations of

the Riemannian curvature R, : m X m — gl(m) are determined by

Ro(u, 2) = 373 ‘aq far | [ Yo for all u € m,
Crq Crr Uy
where
Cq,q = 45+ 3nn =4s + 3n?
Cre =2(p+p)(p — ) + (p — p)(p + p) — nn =4p(p — z) — 0’
cqr =n(3p+p) — 2zn =2n(2p — x)

Cr7q = cq7r = Zn(zp - x)'
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Therefore, the essential instances of R, are

0 cqq Crq O 0 cqr Crr 0
1 0 0 0 —cq 0 0 0 —cq,
Ro(Qlyz) = Z ad s and RO(’I”l, Z) = — r
0 0 0 —Cr,q 0 0 0 —Crr

0 0 0 0 0 O 0 0

Lemma 4.9 provides the Ricci tensor on m. The non-zero evaluations of Ric, : m x m — R are
determined by

1

Rico(z,2) = 1 (45 +3nn+2(p+p)(p — ) — nn) = —s + p(x — p) — n?/2. (5.2)

Relative to the basis m = (h,qi1,71, 2), Ric, is the following bilinear form

0 0
0 0
Rico(u,v) = v*. o for all u,v € m.
0 0
0

o o o O
o o o O

—s+p(x —p) —n?/2

Thus, Ric, = 0 < |s = p(z — p) — n?/2|. Substituting the value for s leaves the Riemannian

curvature R, as

dp(x —p)+n?  2n(2p — ) Uq

Ro(u,z) = iP for all u € m. (5.3)

2n(2p —z)  4p(p —x) —n? Uy

We investigate when the homogeneous triple is moreover Riemannian-flat. From the expression
(5.3) we immediately obtain

Ro=0 & 2n(2p—2)=0 A n*+4p(z —p)=0.
Assume n # 0. Then, R, = 0 requires = = 2p, but the second equation n? = —4p(z —p) = —4p?
has no real solutions for p. Hence, R, = 0 requires n = 0. But then p =0 V x = p is necessary

and sufficient. Thus, we simplify the equivalence to
R,=0 < n=0A (p=0V z=p).

<&

Example 5.3. In [Ko01] p.69 and p.72, the homogeneous pairs with index 1.4'.12 and index
1.41.23 are defined as (g,h) with Lie algebra g = be; X R x5, R and subalgebra b = (p;) for
1 = 12, 23. The derivations 415 and do3 are stated below.

o2 = b9 = 023 = b3 =

0O 0 » O 0 O 2 0 00 0 O 0 0 O 0
1 1 1

01 0 -1 0 7a 0 ~7 00 0 -1 0 0 0 -7

1
1 01 O 1 0 7a 0 1 0 0 O 1 00 0
1
0 0 0 1 0O 0 0 NG 00 0 O 0 0 O 0
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Figure 5.1 : The illustration concerns the triples in 1 as presented in Discussion 5.2. We set
s = p(x — p) — n?/2 for Ric, = 0. Then, R, depends only on the coefficients n,z,p € R. The
two lines represent n = 0A (p = 0V x = p), which is equivalent to R, = 0. The surface visualizes

the kernel of the bilinear form s = p(x — p) — n?/2 = 0, which corresponds to [h, m] = {0}.

As part of the solution to the Einstein-Maxwell equation, the p-invariant Lorentzian scalar
product on m = (h, q1, g2, z) is given by B in (3.5) with coefficients a,b > 0. Lemma 3.10 proves
that the homogeneous triples (g, h, B) are isomorphic to H}(EZ) with 812, d23 as stated above.
We have seen in the previous discussion, how the coefficients of the derivation relate to the
curvature of the homogeneous triple. We transcribe the values in 512, 523 into the notation we

are familiar with.

D g n s —s+p(1‘—p)—n2/2‘4s+3n2 H 4p(x —p) +n? | 2n(2p — )
e e e U —r 4r 0 0
b3 0 0 —J 0 0 0 0 0 0

The space 1.4.1.23 is Riemannian-flat. Concerning space 1.4.1.12, we have Ric, = 0 if » = 0, but
then also R, = 0. &

Discussion 5.4. H% We investigate the geometry of the homogeneous triples in H%. Let n be

the Lie algebra with basis (p1, p2, h, q1,¢2) and commutator

o op2 b1 @
pr| 0 0 0 h 0
[]n = P 0000 for y € R,
h| 0O 0O 0 O 0
q|—h 0 0 0 —yh
2! 0 —-h 0 yh O
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Equivalently,
T
Up 0 0 —1I, Up
0 y
[Un,vn) = | vy, .1 o o o A ouy | A for Z=
—y 0
Vg I, 0 Z Ug

The Lie algebra of a homogeneous triple (g, h, Ls) € Hg is g = nxsR with basis (p1, p2, h, q1, g2, 2).
The isotropy is h = (p1,p2). We consider derivations d on n of the form

0 0 0 s1+y%/4 so—my/2
0 0 0 sy+ay/2 s3+y?/4

b=100 =z 0 0 ;o S1,82,83 €R,
1 0 0 T Y
010 —y x

or equivalently,
0 0 S—zZ7/2 )
0= 0 =z 0 ,  where S= sty /A >

S92 53+ 1y%/4
ILh 0 zhbh+Z

With 3 degrees of freedom, .S represents in fact an arbitrary symmetric matrix. The Lorentzian
scalar product is L4 with respect to m = (h, q1, g2, 2). The scalar product induces the following
geometric tensors. According to Corollary 4.12, the non-zero evaluations of R, : m x m — gl(m)
and Ric, : m x m — R are determined by
S1 82
Ro(u,2) =+P((S+2Z.Z/4) uq) =P Ug
S2 83

Rico(z,2) = —tr (S+ Z.Z/4) = —s1 — s3

for all u € m. We observe Ric, = 0 & , whilst the parameters x,y, so € R are free to
choose. The homogeneous triple is Riemannian-flat if s1, so, s3 = 0. <&

5.2 Classifications in low dimensions

Recall the definition of the linear mappings T®()\), T9Q), T* (R), T%(n) in Table 4.1. Through-
out this section, we assume that these four types generate all isomorphisms between homoge-

neous triples in H . That is, we assume the moduli space is
M?, = H" [isomorphy = H, / <Th(R*), T9(O(R™)), T" (O(R™)) ,TZ(Rm)> .

We derive MY, MY, and M below, which covers the 2- and 3-dimensional triples of type HZ,.
For greater values n,m we restrict the classification to homogeneous triples in H;, that are

moreover Ricci-flat. We define
M = {r € H" : 7 is Ricci-flat} /isomorphy.

In particular, we give parametrizations of the moduli spaces M%, and M%
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Example 5.5. | M§ | A homogeneous triple (g, h, L2) = H3(5) has Lie algebra g = R x5 R, and
isotropy h = {0}. The derivation is determined by a constant z € R. ¢ : R — R maps h — zh.

In matrix form, 6 = (z). We display the commutator tensor ad as

h z h =z
ad= h| 0 —xh . Wedefine adg= H|0 0, and ady=

z|lxh O z|10 O

If = 0 the triple (g,bh, L2) is HJ((0)) with commutator adg. If z # 0 the triple HJ((z)) is
isomorphic to HJ((1)) with commutator ad;. According to Lemma 4.13, the isomorphism is

given by a = T?(2) = (g 193:). Thus, the moduli space M is a set with two points
M ~ {HJ(S) : 6 = (x) with z € {0,1}}.

Any homogeneous triple in H{ is isomorphic to HJ(8) with exactly one derivation from the set
6 € {(0),(1)}. In the classification of low dimensional semi-Riemannian homogeneous triples
given by B. Doubrov and B. Komrakov, HJ((0)) corresponds to the space 1.2, while HJ((1))
corresponds to 2.3, [DK95] p.5. &

3-dimensional homogeneous triples

The following result is on certain 3-dimensional Lie algebras g with Lorentzian scalar product.
The classification is not covered by [DK95], since for 3-dimensional triples (g, b, B), the authors
restrict to isotropy with dimbh > 1.

Lemma 5.6. | M{ | Any homogeneous triple in H{ is isomorphic to H?(§) with exactly one

derivation from the set

0
S ) ) ) :66{071}792071)7&1 2~/\/t[1) (54)
0 0 01 0 1 0 p

Proof. Recall Definition 4.1. A homogeneous triple (g,b, L3) € H{ consists of the semi-direct
product g = R? x5 R, and isotropy h = {0}. The derivation § : R — R? is defined by the matrix
0= (3;’,), for z,p,g € R.

If + # p, transformation of the Lie algebra by Tz(p%x) : g — g shows that H{(5) and
'H(l] ((62)) are isomorphic. In this case, g = 0 is not a restriction. If x = p, we may still
assume g > 0, since HY ((§ 9)) and HY ((§ 7)) are isomorphic by T"((—1)). As in the previous
example, we apply the mapping TP to scale the first non-zero element in the sequence , p, g to
1. Overall, we obtain the parametrization of derivations in (5.4), which is one-to-one with all

pairwise non-isomorphic homogeneous triples in ’H(l]. ]

Another set of derivations that parametrizes M? is

T € 0 0 1 0 0
b€ , , ce€{0,1},z>0,p#1 ) ~ Mj.
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My M My
| Lz I 1z J z
T| 0 1 T 0 1 T 0 1
| | | |
‘ z ‘ ‘ z F ‘
p 0 1 1 R\1 sfo 1 1 R
| | ] |
zr ‘h r ‘h
g 0o 1 0 Ry 0

Figure 5.2 : The tree-like structures minute the reduction process of the coefficients z, p, g, s of
the derivations. The bold letters h, r,z abbreviate the isomorphisms T, T, T%.

Next, we confirm the classification of 3-dimensional Lorentzian homogeneous triples of the
form (he; x5 R, (p1), B) that is stated in [DK95]. Their results are reproduced in Example 2.2.
We proceed in the following way: In the following lemma, we derive our own classification. The
proof shows that without loss of generality B = L3. Thus the classification reduces to determine

M{}. We conclude by matching both classifications.

Lemma 5.7. | M} | Any Lorentzian homogeneous triple of the form (be; x5 R, (p1), B) is iso-

morphic to Hy(8) with exactly one derivation from the set

0 0 € 0 0 s
be 000 /|,]010]|:eecf0,-1,1},seR}~M. (5.5)
1 00 1 01

Proof. In Section 4.1, we have derived the degrees of freedom of a linear mapping § : he; — be;

that is also a derivation. We may assume

0 0 s 0 0 a
=10 2 0 forx,s € R. Awpriori B=| 0 a 0 with a,b € R, a > 0.
1 0 x a 0 b

(5.6)
To see that B covers all p-invariant Lorentzian scalar products on m, we yield the isotropy

representation p : h — gl(m). The commutator relations

[P, 7] =0 01 0
[pr,a] =h define p: h — gl(m)as  p(p1)=| 0 0 -1

[p1,2] = =6(p1) = —q1 00 0

The p-invariance condition p(p1)”.A+ A.p(p1) = 0 of a (0, 2)-tensor A : m x m — R on m shows

that there are 2 degrees of freedom in A, if A is moreover symmetric. The general setup results
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in
= p(p1)" A= Ap(p) = p(p1)" A+ Ap(pr) =
Cl1 Cy C3 0 0 0 0 CcC1 —C2 0 C1 —C9
Co C4 Cs c1 Co c3 0 cg —cy4 c1 2c¢o c3 —Cy4
c3 ¢c5 Cg —Ccy —C4 —Cs 0 cg3 —c5 —cyg c3—c4 —2cy

for coeflicients ¢; € R. The p-invariance implies c¢1,c2,¢c5 = 0, and c3 = ¢4. Taking a = c¢3 and
b = cg gives the scalar product B in (5.6). The determinant of B is det B = —a3, thus B is
Lorentzian if a > 0.

In the spirit of Remark 1.9, we are looking for a Lie algebra isomorphism « : g — g such

that the diagram

Ly: m X m - R
B: m X m — R

commutes. We may chose a : g — g defined by

1

a 0 -5
o= with am=1] 0 ﬁ 0

0 O 1

In matrix notation, we easily confirm L3 = al.B.ay. A straightforward computation alike the

proof of Lemma 3.10 shows further, that the commutator of g

p1 h a1 z
pr| 0 0 h —q
ad= h| 0 0 0 —zh , x,s€R
@ |—h 0 0 —sp1 — Q1
z| 1 xh sp1+xq 0

is stable under the transformation o : g — g.

So far, we have reasoned that it is not a restriction to assume B = Lj3. Consequently, the
classification of Lorentzian homogeneous triples of the form (fe; XsR, (p1) , B) is one-to-one with
/\/l(l), which we are to obtain in the sequel.

According to Lemma 4.13, H} () is isomorphic to HE(5) with derivation as

0 0 s/\2
=10 z/Ax 0 . (5.7)
1 0 /A

The isomorphism is given by T®(\) with A € R*. If z = 0,5 # 0 we substitute A = /|s| in
(5.7). If © # 0 we substitute A = z. Overall, we obtain the parametrization of derivations in

(5.5), which is one-to-one with all pairwise non-isomorphic homogeneous triples in H(l). ]
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2 \ 2
1 \ 1
0 - s 0

-4 -2 0 2 4 -4 -2 0 2 4

Figure 5.3 : We are interested in the classification of the homogeneous triples of type (h; X
R, (p1), L3). The graphs visualize the two different parametrizations of pairwise non-isomorphic

homogeneous triples, which we compare in Corollary 5.8.

The authors of [DK95] classify all 3-dimensional semi-Riemannian homogeneous triples (g, h, B)
with dim f > 1. Unfortunately, the list of triples in the paper does not come with a proof. The 3-
dimensional Lorentzian homogeneous triples with Lie algebra g = fe; x5 R and isotropy h = (p1)

is a small excerpt of the list, which we have reproduced in Example 2.2.

Corollary 5.8. There is a one-to-one correspondence between the Lorentzian homogeneous
triples H}(9) listed in [DK95] and the triples () with derivation § from (5.5).

Proof. We have two different sets of derivations at hand, which — provided correct — characterize
all pairwise non-isomorphic Lorentzian homogeneous triples of the form (be; x5 R, (p1), B).
Consequently, we are looking for a bijection, which couples the derivations of both sets. Applying
the Lie algebra isomorphism Th(/\) for appropriate values A € R* does the job. The matching

process is documented in Table 5.1. ]

4-dimensional homogeneous triples

Subsequently, we restrict the classification to homogeneous triples in H!, that are Ricci-flat. For

that purpose, we define the moduli space
M? = {r e H" :7is Ricci-flat} /isomorphy.

Since dimm = 2+ n + m, the 4-dimensional instances are Mg, M%, M% We derive only the two

latter. To derive Mg, there are 8 coefficients to consider.

Lemma 5.9. | M} | Any Ricci-flat triple in H} is isomorphic to H} () with exactly one derivation

from the set

| 0 0 2/9 0 {(0,0,0,¢) : e € {0,1}}
pemn {0} x {0} x {1} x Ry
0 =z 0 g
5 € o . t(@,p,g.m) €4 {0} x {1} x {0} x R (5.8)
) {1} x {1} x R} xRS
0 0 n »
{1} x R\1 x {0} xRy ] |
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Table 5.1 : Bijective transcription of the derivations from Example 2.2 into the format of Lemma
5.7. The sets in the rightmost column are disjoint. Their union is ({0} x {—1,0,1}) J({1} x R),

which is literally the parametrization of derivations in (5.5).

Index 1) A ) (z,s) €

000 000

3.1 000 000 {(0,0)}
100 100
00 —1 00 —%

3.3 02 0 2 01 0 {@, 79}
10 2 10 1
00 1 00 1

34 a=-1 00 0 000 {(0,1)}
100 100
0 —a 00 —fp

34 —1<a<l1 atl 0 a+1{|l o1 o0 {1} x (F,00)
0 a+l 10 1
00 —1 00 —1

35 a=0 00 0 00 0 {(0,-1)}
10 0 10 0
0 —a%-1 00 —odl

35 0<a 20 0 20 01 0 {1} x (=00, )
0 20 10 1

In Discussion 5.2, we have derived the equivalence Ric, = 0 <

0 0 s O
0 =z O
, n,g,x,p, s €R. (5.9)
1 0 =z
0 0 np
s =p(z —p) —n?/2|. The

orthogonal group on R is just O(R) = {(1),(—1)}. The commutator tensors and the Lorentzian

scalar product B = L, are stable under these transformations, except for the coefficients of the

derivation d on he; x R. Consider the effect of three particular transformations « : g — g on the
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M M
[ I z I z
T 0 1 T 0 1
| | - |
: | L
P 0 1 1 R\1 yl o 1 Ry
- ] | | L | |
‘ zr h r |h | zq [q [q
g 0 1 0 Rf 0 s| o 1 Rf R{
L | | | |
‘ z ‘q L{ LI L:I
nf 0o 1 Rf Rf Rf Rf

Figure 5.4 : We depict the reduction process of the coefficients x, p, g, n, ¥, s in the classifications

that we perform in Lemma 5.9, and Lemma 5.10.

entries of the derivation:

o TAU(-1)TH(-1)  TI(-1).IF(-1)  T(-1))
diag(a) (1,-1,-1,1,-1) (-1,1,—-1,-1,1) (-1,1,-1,1,1)
0 0 s O 0 0 s O 00 s O
5 0 —x O g 0z 0 —g 0z 0 g
1 0 —x O 1 0 =z O 10 =z O
0 O n —p 00 n p 00 —m p

Thus, to determine a set of pairwise non-isomorphic triples, we may narrow the discussion to
derivations with ’x,g,n > 0‘ and ‘:c =0=p>0 ‘ If x # p we transform the Lie algebra by

Tz(p%m), which gives the rule ’ac #p=>9g=0 ‘ Finally, we apply T®(\) : g — g with A € R*,

so that the first non-zero element in the sequence x, p, g, n scales to 1. For instance, if x,p = 0,

but g > 0, we choose the transformation T%(,/g).
Overall, we obtain the parametrization of derivations in (5.8), which is one-to-one with all

pairwise non-isomorphic homogeneous triples in Hj. O
Lemma 5.10. | M2 | Any Ricci-flat triple in H2 is isomorphic to H2 () with exactly one deriva-
tion from the set
([0 0 0 s+42/4 —ay/2
00 0 way/2 y*/d—s {(0,0,¢€) : e € {0,1}}
sesl 00z 0 0 (zy,s) €4 {0} x {1} x R (5.10)
100 T y {1} xR xRS
010 —y z
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Proof. Generally, we consider derivations 0 : heg — hey of the form

S —xZ/2
0 y

J = x ,  where Z= , and S symmetric. (5.11)
I xzlo + 7

In Discussion 5.4, we derive the relation ‘ tr S+ 2Z%/4 = O‘ to yield Ric, = 0. Since Z%/4 =
—diag(y?,y?%)/4, we choose S to be of the general form

51 +y%/4 s cost/2 sint/2
S = 1y ? , Ss1,,s2€R. Let Q= / /
S9 y?/4 — 51 —sint/2 cost/2

By transformation with 79(Q) : g — g, the triple H3(8) is isomorphic to H2(5) with

Qr.S.Q — 22/2

I xzlo + 7
Note, Q7.Z.Q = Z. The matrix product QT.5.Q is

2 . .
4 + sycost — s9sint s1sint + sgcost
QT.s.Q = v’/

s1sint 4+ sgcost y2/4—31cost+8251nt
We choose t € [m,m), so that 0 = sysint + sacost and s = sjcost — sysint > 0, and thereby

eliminate one degree of freedom. Henceforth, we assume the derivation ¢ is of the form (5.11),

where
s+y?/4  —xy/2
I R e i
ry/2 y?/d—s
The effects of two specific transformations « : g — g on the derivation reveal, that is
not a restriction. Note, (') € O(R?).

o 1 79((39)) M) 79((39))
diag (1,1,1,1,1,1) (1,-1,-1,-1,1,-1) (-1,1,1,-1,1,1)
S —axZ/2 S —(—x)Z/2 S—xz(—=2)/2
0 x (—x) x
I vl + 7 I (—2)ls + Z I eIy + (~2)

Finally, we apply TP()\) : g — g with A\ € R*, so that the first non-zero element in the sequence
x,y,s scales to 1. Overall, we obtain the parametrization of derivations in (5.10), which is

one-to-one with all pairwise non-isomorphic homogeneous triples in H3. O

In [Ko01], B. Komrakov provides a list of pairwise non-isomorphic homogeneous pairs of
dimension 4 and dimbp > 1. The list extends in almost 80 pages. The classification of 4-

dimensional homogeneous triples would require an even more verbose exposition.
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Figure 5.5 : The graphs of s;sint + sy cost, and s; cost — sosint. The black dot indicates the
value t € [m,7), so that sy sint 4 sycost = 0, and s cost — sgsint > 0. For the illustration, we

have chosen the constants s; = %, S9 = %.

To state the next result, we assume the classification of 4-dimensional homogeneous pairs
in [Ko01] is correct. We classify all 4-dimensional homogeneous triples (g, h, B) with dimbh > 1

and the geometric properties

B has index 1 the scalar product B on m is Lorentzian
R, #0 not Riemannian-flat (5.12)
Ric, =0 Ricci-flat

For that purpose, we define the moduli space

M? = {1 € H" : T has geometry (5.12)} /isomorphy.

Corollary 5.11. M%,M% Any 4-dimensional Lorentzian homogeneous triple (g,b, B) with
dimb > 1 that is Ricci-flat and non-Riemannian-flat is isomorphic to either H1(d1), or HZ(d2)

with exactly one derivation from the set

{(0,0,0,1)}
0 0 plx—p)—n?/2 0 {0} x {0} x {1} x R
0 z 0 0} x {1} x {0} x R .
e 10 @ 0 (@pgm el ;ix;ix;g}xki =M
0 n P {1} x {0} x {0} x R
{1} xR\{0,1} x {0} xR} ) |
00 0 s+y2/4 —ay/2 )
00 0 ay/2 y?/4—s {(0,0,1)}
02 € 00 = 0 0 :(m,y,s)EU {0} x {1} x RF ~ M}
1 00 x Y {1} x R x R*
L \0 1 0 —y T )

Proof. Let (g,h, B) be a 4-dimensional Lorentzian homogeneous triple with curvature R, # 0,
and Ric, = 0. According to Corollary 4.3, this triple is isomorphic to an element in either H1,

or H3. Thus, the classification of all such triples reduces to determine M}, and M3.
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M} M
| |
T 0 1 T 0 1
| | | |
| | | |
P 0 1 1 0 R\ 04 y 0 1 Ry
| | | | | | | |
| | I .
g 0 1 0 R{ 0 0 5 1 RT R*
| | | | | |
I I .
n| 1 RT  Rf Rt Rt R{

Figure 5.6 : To obtain the moduli spaces M% and M(Q), we simply remove Riemannian-flat spaces

from /\/l% and M% The classification is carried out in Corollary 5.11.

The space /\/l% consists of all pairwise non-isomorphic homogeneous triples in A}, that are
Ricci-flat. So, M;‘z is merely M% with Riemannian-flat spaces removed.
Lemmas 5.9, 5.10 parametrize M}, MZ through the sets of derivations (5.8), (5.10). In

terms of the coefficients of the derivation, a triple H}(J) with J as in (5.8) is Riemannian-flat

if ’n =0A(p=0Vz=p) ‘ This is a result of Discussion 5.2. According to Discussion 5.4, a
triple H3(8) with § as in (5.10) is Riemannian-flat if s = 0.
We remove the derivations from the sets (5.8), (5.10), which satisfy these criteria. This

establishes a one-to-one correspondence with M%, M% and proves the claim. O

5.3 Future work

The thesis has obvious shortcomings: There is a fool-proof method to construct a Lie group
with Lie algebra n x5 R, where n is a nilpotent Lie algebra with basis so that ¢ : n — n is in real
Jordan normal form. Applying an appropriate basis transformation, any triple H/, (Y, 0) is of
this form. However, I do not know of a universal method to explicitly contruct a homogeneous
space with associated homogeneous triple H/, (Y, ).

In [DK95], the parametrization of homogeneous triples in M}J is closely related to the Jordan
normal form of the derivation. This seems to be advantageous in order to formulate the left-
action of the corresponding homogeneous space. I yield new moduli spaces, for instance /\;l%, /\;lg,
in the most straight-forward way. That is, I neglect the Jordan normal form of the derivation.
However, I hope that the classifications serve as a good reference for future parametrizations of
these moduli spaces.

With my current state of knowledge, I am not able to report on the applications of Lorentzian

Ricci-flat homogeneous spaces to relativistic physics.
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Theses

Let us accentuate the major contributions of this thesis.

e Suppose the classification of 4-dimensional homogeneous pairs in [Ko01] is correct. Then,
Corollary 3.12 shows that any 4-dimensional Lorentzian homogeneous triple with isotropy
dim b > 1, and curvature R, # 0, Ric, = 0 is isomorphic to (g, h, L4) with g = be,, xR x5R,
and h = (p1,...,pp) for either n =1,m=1,or n=2,m = 0.

e We define a new class of Lorentzian homogeneous triples H’, in 4.1. The class incorporates
all homogeneous triples with geometry R, # 0, Ric, = 0 that are known to us. We indicate
the connection to previous work such as [CW70], and [FMO5].

e The geometry of triples in H}}, with m # 0 has not been published prior to this thesis. The
set of all triples of the form H} (Y, d) for fixed n, and m > 2 is not a vector space. The
triples in HY, have isotropy of dimension 0. In this case, the corresponding homogeneous

spaces are Lie groups with left-invariant metric.

o We present in detail the geometry of all 4-dimensional homogeneous triples that originate
from our construction H}},. We emphasize on the choice of parameters in Y, J, such that
the curvature satisfies R, # 0, Ric, = 0. In particular, we yield instances of homogeneous
triples, which correspond to 4-dimensional Lie groups with left-invariant Lorentzian metric

of this geometry.

e Suppose the classification of 4-dimensional homogeneous pairs in [Ko01] is correct. Then,
Corollary 5.11 classifies the 4-dimensional Lorentzian homogeneous triples with isotropy
dimbh > 1, and curvature R, # 0, Ric, = 0.



