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Introduction

A homogeneous space is the coset manifold G/H, where G is a Lie group, and H is a closed Lie
subgroup of G. The canonic mappings related to a homogeneous space are the projection, and
the left-action. The differential of the left-action extends tensors of special form to invariant
tensor fields on the manifold G/H. For instance, an invariant metric on G/H originates from a
single scalar product B.

A homogeneous triple associated to the homogeneous space G/H with invariant metric is
(g, h, B), where g is the Lie algebra of G, h ⊂ g is the subalgebra induced by the subgroup H,
and B is the scalar product on a vector space complement m with g = h ⊕ m induced by the
metric.

For a homogeneous space with invariant metric, geometric notions such as the Levi-Civita
connection, and the curvature can be derived at a single point of G/H in terms of the homo-
geneous triple. The curvature tensor obtained this way translates to the invariant curvature
tensor field on the semi-Riemannian manifold G/H. Locally, the homogeneous triple uniquely
determines the corresponding semi-Riemannian homogeneous space.

In this thesis, we are interested in homogeneous triples that relate to homogeneous spaces
with the following geometric properties:

The invariant metric is Lorentzian.

The Riemannian curvature is non-zero.

The space is Ricci-flat.





(0.1)

Metrics of index 1 are the core in relativity theory. From the geometric viewpoint, Riemannian-
flat homogeneous spaces are not particularly interesting. A Ricci-flat homogeneous space is
naturally an Einstein manifold.

In [CW70], M. Cahen and N. Wallach classify the symmetric triples of geometry (0.1). In
[FM05], J. Figueroa-O’Farrill et al. construct further examples of such homogeneous triples. To
the best of our knowledge, Lie groups with left-invariant metric and geometry (0.1) have not
been explicitly mentioned in the literature.

A homogeneous triple is the combination of a homogeneous pair (g, h) with an invariant
scalar product B on a vector space complement m. In [Ko95], B. Komrakov gives a computer
generated classification of 4-dimensional homogeneous pairs with dimh ≥ 1. We assume that
his classification is correct. Then, any 4-dimensional homogeneous triple with dimh ≥ 1 is the
combination of a homogeneous pair in Komrakov’s list with an invariant scalar product. In
order to determine all 4-dimensional homogeneous triples with dim h ≥ 1 and geometry (0.1),
we simply investigate the geometry of all possible combinations.

Although Komrakov’s list of pairwise non-isomorphic homogeneous pairs extends over more
than 80 pages, this strategy is doable. In [Ko01], B. Komrakov provides all invariant Lorentzian
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scalar products to each of the 4-dimensional homogeneous pairs. The efforts are worthwhile:
We detect homogeneous triples, which are of the desired geometry and have not been covered
by previous work.

The results lead us to introduce a new class of Lorentzian homogeneous triples Hn
m. To

the best of our knowledge, Hn
m includes all homogeneous triples with geometry (0.1) that are

mentioned in the literature. In addition, the class covers all homogeneous triples of this particular
geometry we could detect.

Our construction is an essential extension to previous work. The elements in Hn
m do not

align in a vector space, but the parameters are subject to non-linear equations. Furthermore,
H0

m corresponds to Lie groups with left-invariant Lorentzian metric, which are Ricci-flat, but
not Riemannian-flat for a certain choice of parameters.

We structure the thesis in the following way. In the introductory chapter, we cover the math-
ematical concepts that are relevant to our work. Our emphasis is on the geometric properties
of a homogeneous space with invariant metric that can be derived in terms of an associated
homogeneous triple.

In the second chapter, we give a concise overview on previous work that was useful to us.
For instance, the classification of low-dimensional semi-Riemannian homogeneous spaces by B.
Doubrov and B. Komrakov is an excellent reference to get acquainted with the subject. However,
to several related publications we point later on.

In Chapter 3, we process the computer generated list of 4-dimensional homogeneous pairs
with dim h ≥ 1 stated in [Ko01]. We argue that 10 homogeneous pairs in Komrakov’s list extend
to homogeneous triples of geometry (0.1). Assuming that Komrakov’s classification is correct,
we focus on the common structure of such triples.

In Chapter 4, we define the homogeneous triples of type Hn
m. We explicitly motivate the

design, and derive the Riemannian curvature, and the Ricci tensor of the triples in Hn
m. No-

tions such as Riemannian-, and Ricci-flatness reduce to non-linear equations in the parameters
associated to a triple in Hn

m.
According to a general result on semi-Riemannian manifolds, any homogeneous triple with

geometry (0.1) is of dimension ≥ 4. In the last chapter, we discuss the properties of all 4-
dimensional homogeneous triples that originate from our construction Hn

m. This includes the
case, where dim h = 0. Subsequently, we confirm a small part of the classification of low-
dimensional homogeneous triples in [DK95], which is originally stated without proof. Our efforts
culminate in the (new) classification of all 4-dimensional homogeneous triples with dimh ≥ 1,
and desired geometry.
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Chapter 1

Propaedeutic

This chapter neither substitutes excellent literature on semi-Riemannian geometry such as
[ON83], [Bo86], and [Bu85], nor appealing books on Lie theory and homogeneous spaces such as
[HN91], and [Ar03]. Nevertheless, we briefly review the mathematical concepts that are relevant
to our work.

Our notation does not deviate from what is commonly used in the literature. The formulas
we state serve as a reference. Most of the examples have applications later on.

1.1 Lorentzian scalar products

Let V be a n-dimensional vector space. A scalar product is a symmetric non-degenerated bilinear
form (, ) : V × V → R. Two vectors v, w ∈ V are orthogonal if (v, w) = 0. A set of vectors
{ẽ1, . . . , ẽn} with (ẽi, ẽj) ∈ ±δi,j forms an orthonormal basis of V . The index of a scalar
product (, ) is the largest integer that is the dimension of a subspace W ⊂ V on which (, )
is negative definite, i.e. (w1, w2) ≤ 0 for all w1, w2 ∈ W .

To (, ) : V × V → R we associate a matrix B relative to a basis of V = 〈e1, . . . , en〉 so
that (u, v) = vT .B.u for all u, v ∈ V . B is symmetric and detB 6= 0, [ON83] p.47. The scalar
products we are mostly dealing with in this thesis are of index 1, called Lorentzian1. In that
case, we usually pick a basis of V = 〈e1, . . . , en〉 so that the matrix associated to (, ) is of the
form

B = Ln :=




0 0 1

0 In−2 0

1 0 0


 , where In :=




1 0 0

0
. . . 0

0 0 1




is the identity matrix. The scalar product (, ) is negative definite on W = 〈e1 − en〉, but not on
any 2-dimensional subspace.

Example 1.1. Let a, b, c, d ∈ R and a, b 6= 0. The scalar product on V = 〈e1, . . . , e4〉 defined
by the matrix

B =




0 0 0 a

0 a 0 0

0 0 b c

a 0 c d




with inverse B−1 =
1

a2b




c2 − bd 0 −ac ab

0 ab 0 0

−ac 0 a2 0

ab 0 0 0




1 Hendrik Antoon Lorentz, * 18. Jul 1853 in Arnhem, † 4. Feb 1928 in Haarlem
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Figure 1.1 : For a Lorentzian scalar product with associated matrix B, the set {x ∈ V : xT .B.x =
0} defines a cone. We plot the sets {x ∈ R2 : xT .L2.x = 2x1x2 = 0}, and {x ∈ R3 : xT .L3.x =
2x1x3 + x2

2 = 0}.

has index 1 for a, b > 0 positive, and index 3 for a, b < 0 negative. This becomes evident when
we display B with respect to the basis V =

〈
α−1

i .e1, . . . , α
−1
i .en

〉
for matrices αi as

α1 αT
1 .B.α1 α3 αT

3 .B.α3


1√
a

0 0 c2−bd
2a3/2b

0 1√
a

0 0

0 0 1√
b

−c√
ab

0 0 0 1√
a







0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0







−1√−a
0 0 bd−c2

2(−a)3/2b

0 1√−a
0 0

0 0 1√−b
−c√−ab

0 0 0 1√−a







0 0 0 1

0 −1 0 0

0 0 −1 0

1 0 0 0




The determinant of B is |B| = −a3b. The remaining combinations b < 0 < a, and a < 0 < b,
lead to B of index 2. 3

Remark 1.2. Let n ≥ 1. The equation αT
i .Ln+2.αi = Ln+2 holds for any

α1 = α2 = α3 = α4 =


λ 0 0

0 Im 0

0 0 λ−1







1 0 0

0 Q 0

0 0 1







1 ηT −ηT .η/2

0 Im −η

0 0 1







1 0 0

−η Im 0

−ηT .η/2 ηT 1




where λ ∈ R∗, Q ∈ Rn×n with QT .Q = Q.QT = In, and η ∈ Rn. In other words, a Lorentzian
scalar product is stable under these types of vector space transformations. 3

Let B be a symmetric matrix with detB 6= 0. Then B, and B−1 define two scalar products
of the same index on V . A fact, easy to prove in matrix notation.
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Lemma 1.3. Consider a vector space V of dimension n ≥ 2 and a Lorentzian scalar product on
V with associated matrix B. Let a skew symmetric matrix Ω ∈ Rn×n define a linear mapping
Ω : V → V . The matrix product −ΩT .B−1.Ω : V → V maps all vectors to zero iff Ω = 0.

Proof. In order to prove “⇒”, we assume Ω 6= 0. Since Ω is skew symmetric, the image of Ω con-
tains a 2-dimensional subspace of V , i.e. dim imΩ ≥ 2. Because B corresponds to a Lorentzian
scalar product, B−1 defines a scalar product of index 1 as well. Suppose −ΩT .B−1.Ω = 0, but
then the set {x ∈ V : xT .B−1.x = 0} contains a 2-dimensional vector space – a contradiction to
B−1 being of index 1.

1.2 Semi-Riemannian manifolds

In this thesis, manifolds M are differentiable manifolds of finite dimension. Functions and vector
fields on manifolds are smooth. F(M) denotes the set of real values functions f : M → R on
the manifold M . X(M) denotes the set of vector fields on M . In this section, all notions and
formulas are with respect to a single manifold M , so we abbreviate these sets to F, and X.

Remarkably, for two vector fields U, V ∈ X there exists a unique third W ∈ X, which
satisfies Wf = U(V f) − V (Uf) for all (smooth) functions f ∈ F, [Bo86] p.152. The vector
field commutator is defined as [U, V ]X := W , or simply [U, V ].

A linear connection D : X × X → X with DV U := D(U, V ) is a function that is R-linear in
the first slot, and tensor-like in the second, i.e.

DV (U + W ) = DV U + DV W, and DfV U = fDV U for all U, V,W ∈ X, f ∈ F.

Additionally, D satisfies the product rule

DV (fU) = (V f)U + fDV U for all U, V ∈ X, f ∈ F.

The value of DV U ∈ X at each point x ∈ M defines the vector rate of change of U in the Vx

direction.
Please consult [ON83] pp.28 for the definitions of integral curves, and the (local) flow induced

by a vector field U ∈ X. A vector field is complete if each of its maximal integral curves is defined
on R. Prominent examples of manifolds are Lie groups, and homogeneous spaces.

A semi-Riemannian2 manifold (M, g) is a manifold M together with a symmetric non-
degenerated (0, 2)-tensor field g on M . g is the metric on M , which evokes all geometric notions
such as isometry, geodesics, and curvature. Non-degeneracy of g means that, when restricted
to a point x ∈ M , the metric defines a scalar product gx : TxM × TxM → R on the tangent
(vector) space TxM of M in x. gx has constant index for all x ∈ M , which we make the index of
the metric g. A metric of index 0 is called Riemannian, a metric of index 1 is called Lorentzian.
While on any manifold a Riemannian metric exists, we find the following statement in [ON83]
p.149.

Theorem 1.4. For a smooth manifold M the following are equivalent: (1) There exists a
Lorentzian metric on M . (2) There is a non-vanishing vector field on M . (3) Either M is
non-compact, or M is compact and has Euler number χ(M) = 0.

2 Georg Friedrich Bernhard Riemann, * 17. September 1826 in Breselenz, † 20. Juli 1866 in Selasca
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A mapping α : M → M is an isometry of M if the following diagram commutes

gx : TxM × TxM → R

↓ dα|x ↓ dα|x ↑ Id

gαx : TαxM × TαxM → R

for all x ∈ M .

The term dα|x abbreviates the differential dyα(y)|y=x, and αx = α(x).
For two vector fields U, V ∈ X it is convenient to write 〈U, V 〉 := g(U, V ). U and V are

orthogonal if 〈U, V 〉 = 0. A vector field W ∈ X is Killing3 if the flow induced by W is an
isometry for all stages of the flow, equivalently

W 〈U, V 〉 = 〈[W,U ], V 〉+ 〈U, [W,V ]〉 for all U, V ∈ X. (1.1)

On a semi-Riemannian manifold (M, g), there exists the unique Levi-Civita4 linear connec-
tion ∇ : X× X → X with the additional properties

∇UV −∇V U = [U, V ], and W 〈U, V 〉 = 〈DW U, V 〉+ 〈U,∇W V 〉 for all U, V, W ∈ X.
(1.2)

Combining the three relations in (1.1), (1.2), we yield for a Killing vector field W ∈ X

〈∇UW,V 〉+ 〈U,∇V W 〉 = 0 for all U, V ∈ X. (1.3)

The distinguished linear connection ∇ is characterized by the Koszul5 formula

2 〈∇V U,W 〉 = V 〈U,W 〉+ U 〈W,V 〉 −W 〈V, U〉 − 〈V, [U,W ]〉+ 〈U, [W,V ]〉+ 〈W, [V, U ]〉

for all U, V, W ∈ X. If these vector fields are moreover Killing, we make use of (1.1) to simplify
the Koszul formula to

2 〈∇V U,W 〉 = 〈[V,U ],W 〉+ 〈U, [V, W ]〉+ 〈[U,W ], V 〉+ 〈W, [U, V ]〉 − 〈[W,V ], U〉

− 〈V, [W,U ]〉 − 〈V, [U,W ]〉+ 〈U, [W,V ]〉+ 〈W, [V, U ]〉

=− 〈[U, V ],W 〉 − 〈U, [W,V ]〉 − 〈[W,U ], V 〉 .

(1.4)

The Theorema Egregium by F. Gauß6 states that the Gauß-curvature of a surface depends
solely on the first fundamental form, i.e. the metric. B. Riemann was inspired by this result
and worked towards a generalization of curvature in higher dimensions.

The Riemannian curvature is the (1, 3)-tensor field R : X3 → X defined by

RU,V W := R(U, V, W ) = ∇[U,V ]W −∇U∇V W +∇V∇UW for all U, V, W ∈ X. (1.5)

The following identities are immediate consequences of the Levi-Civita connection, and the
Koszul formula. The intrinsic symmetries of R are

RU,V W +RV,UW = 0, RU,V W +RV,W U+RW,UV = 0, 〈RU,V W,X〉+〈RU,V X, W 〉 = 0, (1.6)

3 Wilhelm Killing, * 10. May 1847 Burbach, † 11. Feb 1923 Münster

4 Tullio Levi-Civita, * 29. Mar 1873 in Padua, † 29. Dec 1941 in Rom

5 Jean-Louis Koszul, * 3. Jan 1921 in Strasbourg

6 Johann Carl Friedrich Gauß, * 30. Apr 1777 in Braunschweig, † 23. Feb 1855 in Göttingen
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for all U, V, W,X ∈ X, [Sa97] p.34. Combining two of the symmetries, we obtain

RU,V W = RU,W V −RV,W U for all U, V, W ∈ X. (1.7)

According to [Be80] p.26, we have RU,W V = ∇∇W V U − ∇W∇V U for all V, W ∈ X and any
Killing vector field U ∈ X. Assume additionally V is Killing, then (1.7) becomes

RU,V W = ∇∇W V U −∇W∇V U −∇∇W UV +∇W∇UV

= ∇∇W V U −∇∇W UV +∇W [U, V ].
(1.8)

The Ricci7 curvature is the (0, 2)-tensor field Ric : X× X → F defined by

Ric(U, V ) = tr (W 7→ RW,UV ) for all U, V ∈ X. (1.9)

According to [Sa97] p.44, Ric is symmetric, i.e. Ric(U, V ) = Ric(V, U) for all U, V ∈ X.
A semi-Riemannian manifold is Ricci-flat if Ric = 0. An Einstein8 manifold carries a metric

g such that Ric = λg for some constant λ ∈ R.

1.3 Lie groups and Lie algebras

Let G be a manifold and a group. G is a Lie9 group, if the group operation ◦ : G×G → G and
the inverse mapping ζ : G → G are smooth. We denote the neutral element as e ∈ G.

An omnipresent Lie group is the general linear group GL(Rn), which is the set (and dif-
ferentiable manifold) of all automorphisms of the vector space Rn. GL(Rn) is identified with
the set of all invertible (n × n)-matrices with coefficients in R. The group operation is matrix
multiplication. The inverse ζ is matrix inversion. The neutral element e is the identity matrix
In ∈ GL(Rn). The dimension of GL(Rn) is n2.

The isometries of a semi-Riemannian manifold (M, g) form the Lie group Aut(M, g). The
group operation is concatenation of isometries. The inverse of an isometry is the inverse diffeo-
morphism. The neutral element is the identity mapping on the manifold. If M is complete, we
have

dimAut(M, g) ≤ m(m + 1)
2

, (1.10)

where m = dimM , [Sa97] p.120.
An immersed submanifold H of G that is also an abstract subgroup of G is called a Lie

subgroup.

Example 1.5. The set D+ of all (n× n)-matrices with strictly positive entries on the diagonal
is a Lie subgroup of GL(Rn). D+ is isomorphic to the Lie group (Rn, +), the space Rn with
vector addition. An isomorphism is given by (x1, . . . , xn) 7→ diag(expx1, . . . , expxn).

The set of all (n × n)-matrices with determinant 1 forms the special linear group SL(Rn),
which again is a Lie subgroup of GL(Rn). 3

7 Gregorio Ricci-Curbastro, * 12. Jan 1853 in Lugo/Ravenna, † 6. Aug 1925 in Bologna

8 Albert Einstein, * 14. Mar 1879 in Ulm, † 18. Apr 1955 in Princeton

9 Marius Sophus Lie, * 17. Dec 1842 in Nordfjordeid, † 18. Feb 1899 in Oslo
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The left-translation by x ∈ G is the diffeomorphism Lx : G → G, which maps y 7→ xy. A
vector field U ∈ X(G) on G is left-invariant if dLζ(x)|xUx = Ue for all x ∈ G. Such a vector
field is determined by u ∈ TeG thru ūx = dLx|eu. The term dLx|e abbreviates the differential
dyLx(y)|y=e. In general, to each (r, s)-tensor A on TeG, there corresponds a unique left-invariant
(r, s)-tensor field Ā on G with Āe = A. The scheme for a (1, 2)-tensor is

Āx : TxG × TxG → TxG

↓ dLζ(x)|x ↓ dLζ(x)|x ↑ dLx|e
A : TeG × TeG → TeG

for all x ∈ G.

A brief computation reveals, that the commutator [ū, v̄]X of two left-invariant vector fields
ū, v̄ ∈ X(G) again is a left-invariant vector field. This closeness leads to the following notion: The
Lie algebra g of a Lie group G is the vector space TeG together with a (1, 2)-tensor [, ] : g×g → g

called Lie bracket, or commutator. The Lie bracket is defined as [u, v] := [ū, v̄]X|e for all vectors
u, v ∈ g. The commutator is skew symmetric, i.e. [u, v] = −[v, u], and satisfies the Jacobi10

identity,
[[u, v], w] + [[v, w], u] + [[w, u], v] = 0 for all u, v, w ∈ g. (1.11)

A left-invariant vector field ū ∈ X(G) induces a unique integral curve γu : R→ G such that
γu(0) = e, [Ar03] p.16. The exponential map is exp : g → G with u 7→ γu(1).

The Lie algebra of GL(Rn) is gl(Rn), the set of all (n × n)-matrices. Two matrices X, Y ∈
gl(Rn) commute as [X,Y ]gl = X.Y − Y.X, [HN91] p.26. The exponential map corresponds to
the matrix exponential expgl : gl(Rn) → GL(Rn) with expgl(X) =

∑
k∈N0

Xk/k!.
Let (M, g) be a semi-Riemannian manifold. The Lie algebra of Aut(M, g) is the set of all

complete Killing vector fields on M , [ON83] p.255.
A vector subspace h ⊂ g is a Lie subalgebra of g if [h, h] ⊂ h. Then, h is a Lie algebra with

commutator induced by g restricted to elements of h.

Example 1.6. The set d of all (n×n)-matrices with entries on the diagonal is the Lie algebra of
the Lie group D+ and a Lie subalgebra of gl(Rn). Any two diagonal matrices X, Y ∈ d commute,
i.e. the commutator [X, Y ]gl = X.Y − Y.X = 0 vanishes.

The Lie algebra of SL(Rn) is denoted sl(Rn). The algebra consists of all (n × n)-matrices
with trace 0. sl(Rn) again is a Lie subalgebra of gl(Rn). For instance, sl(R2) = 〈X1, X2, X3〉 is
the 3-dimensional vector space spanned by the matrices

X1 =
1
2


1 0

0 −1


 , X2 =


0 1

0 0


 , X3 =


0 0

1 0


 , with [, ]gl =

X1 X2 X3

X1 0 X2 −X3

X2 −X2 0 2X1

X3 X3 −2X1 0

.

By linearity, the commutator is determined by the values on elements of the basis. 3

10 Carl Gustav Jacob Jacobi, * 10. Dec 1804 in Potsdam, † 18. Feb 1851 in Berlin



9

Figure 1.2 : Excerpt from Theorie der Transformationsgruppen, [Lie30] p.4. The author yields
the group action of SL(R2) as (a1, a2, a3) ◦ (b1, b2, b3) = (c1, c2, c3) on a neighborhood of e =
(0, 0, 1).

Two Lie algebras g1, g2 are isomorphic if there exists a vector space isomorphism α : g2 → g1

satisfying [u, v]g2 = α−1.[α.u, α.v]g1 for all u, v ∈ g2. The corresponding diagram is

[, ]g2
: g2 × g2 → g2

↓ α ↓ α ↑ α−1 .

[, ]g1
: g1 × g1 → g1

The Lie group Aut(g) is the group of all automorphisms α ∈ GL(g) that leave the commutator
of g invariant as [u, v]g = α−1.[α.u, α.v]g for all u, v ∈ g. The Lie algebra of Aut(g) is the set of
derivations

Der(g) := {δ ∈ gl(g) : δ.[u, v]− [δ.u, v]− [u, δ.v] = 0 for all u, v ∈ g}. (1.12)

Conjugation by x ∈ G is the mapping Ξx : G → G with y 7→ xyx−1. The adjoint represen-
tation of G is the group homomorphism Ad : G → Aut(g) given by x 7→ dΞx|e. The adjoint
representation of g is the homomorphism ad : g → Der(g) given by ad = dAd|e. The (1, 2)-tensor
ad : g× g → g is identical to the Lie bracket [, ].

The descending series of a Lie algebra g is the sequence of subspaces gi ⊂ g defined iteratively
as

[g]1 := g, and [g]i+1 := [g, [g]i] for i ∈ N.

A Lie algebra is k-step nilpotent if [g]k 6= [g]k+1 = {0}. A k-step nilpotent algebra n is the Lie
algebra of the group (n, ◦cbh), where the group action ◦cbh on n is given by the Campbell-Baker-
Hausdorff series

x ◦cbh y = x + y +
1
2
[x, y]− 1

12
(
[[x, y], x] + [[y, x], y]

)
+

1
24

[[[y, x], x], y] + . . . (1.13)

The inverse ζ : n → n maps x 7→ −x, and the neutral element has the coordinates e = (0, . . . , 0).
Vector addition other than (1.13) is not a meaningful operation on the Lie group (n, ◦cbh).
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Expression (1.13) lists the first terms of an infinite series, [HN91] p.44. However, for a k-
step nilpotent Lie algebra summands involving the commutator of order ≥ k vanish. For many
important Lie groups such as the orthogonal group On = {x ∈ GL(Rn) : xT .x = In} for instances
with n ≥ 3, an explicit formula of the group operation does not exist in local coordinates. In
the neighborhood of e, the first terms of the Campbell-Baker-Hausdorff series usually provide a
good numerical approximation of the group action.

Example 1.7. Let n ∈ N0. The n-Heisenberg11 group Hen is a 2n + 1-dimensional Lie sub-
group of GL(Rn+2) consisting of the matrices

Hen :=








1 pT h

0 In q

0 0 1


 : p, q ∈ Rn, h ∈ R




⊂ GL(Rn+2). (1.14)

The group operation of Hen is matrix multiplication, the inverse mapping is matrix inversion.
As a manifold Hen is diffeomorphic to R2n+1 = 〈p1, . . . , pn, h, q1, . . . , qn〉. Encoding the matrices
(1.14) as triples (p, h, q) ∈ Rn × R× Rn, the group action is

(xp, xh, xq) ◦ (yp, yh, yq) = (xp + yp, xh + yh + xT
p .yq, xq + yq).

Inversion ζ maps (xp, xh, xq) 7→ (−xp,−xh + xT
p .xq,−xq). The triple e = (0, 0, 0) corresponds to

the identity matrix.
The Lie algebra to Hen is the n-Heisenberg algebra hen. Naturally, hen is a Lie subalgebra of

gl(Rn+2) consisting of the matrices

hen :=








0 pT h

0 0 q

0 0 0


 : p, q ∈ Rn, h ∈ R




⊂ gl(Rn+2). (1.15)

The commutator of hen is the matrix commutator. However, encoding the elements of the algebra
hen as triples (p, h, q) ∈ Rn × R× Rn reduces the commutator to

[(up, uh, uq), (vp, vh, vq)] = (0, uT
p .vq − vT

p .uq, 0). (1.16)

We denote the canonic basis of hen as 〈p1, . . . , pn, h, q1, . . . , qn〉. Using (1.16), the only non-
zero commutators of basis elements are [pi, qi] = −[qi, pi] = h for i = 1, . . . , n. We summarize
the commutator relations of he1, and he2 as follows:

[, ]he1 =

p1 h q1

p1 0 0 h

h 0 0 0

q1 −h 0 0

[, ]he2 =

p1 p2 h q1 q2

p1 0 0 0 h 0

p2 0 0 0 0 h

h 0 0 0 0 0

q1 −h 0 0 0 0

q2 0 −h 0 0 0

11 Werner Karl Heisenberg, * 5. Dec 1901 in Würzburg, † 1. Feb 1976 in München
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For n ≥ 1, we have [hen]2 = hR, and [hen]3 = {0}. Thus, the n-Heisenberg algebra hen is
2-step nilpotent. The Campbell-Baker-Hausdorff series reduces to x ◦cbh y = x + y + 1

2 [x, y]. In
triple notation, we obtain

(xp, xh, xq) ◦cbh (yp, yh, yq) =
(
xp + yp, xh + yh +

(
xT

p .yq − yT
p .xq

)
/2, xq + yq

)
.

3

Consider two Lie groups K,G, and a Lie group homomorphism Ψ : K → Aut(G). The
semi-direct product GoΨ K is the manifold G×K with group action

(x1, y1) ◦ (x2, y2) =
(
x1 ◦G Ψ(y1)(x2), y1 ◦K y2

)
for xi ∈ G, yi ∈ K.

We denote by g, k the Lie algebras of G,K. The Lie algebra of GoΨ K is the vector space g⊕ k

with commutator

[u1 + v1, u2 + v2] = [u1, u2]g + [v1, v2]k + (dψ|e.v1).u2 − (dψ|e.v2).u1 for ui ∈ g, vi ∈ k, (1.17)

where ψ : K → Aut(g) with y 7→ dxΨ(y)(x)|x=e∈G. Then, dψ|e∈K .v is a derivation on g for all
v ∈ k, [HN91] p.223.

Conversely, for a homomorphism ∆ : k → Der(g) we define the semi-direct product Lie
algebra with commutator as in (1.17) with dψ|e replaced by ∆.

The Lie algebras most relevant for this thesis are semi-direct products of a nilpotent Lie
algebra n and a 1-dimensional algebra, which we denote by R. Formally, we have no∆ R with
∆ : R → Der(n). However, the mapping ∆ is determined by a single matrix, say δ := ∆(1) ∈
Der(n). We denote by noδ R the Lie algebra with commutator

[u1 + v1, u2 + v2] = [u1, u2]n + v1 δ.u2 − v2 δ.u1 for ui ∈ n, vi ∈ R. (1.18)

The commutator (1.18) satisfies the Jacobi identity iff δ : n → n is a derivation on the Lie
algebra n.

At the beginning of this section, we have indicated how to extend a tensor A of arbitrary
tensor rank on g = TeG to the corresponding left-invariant tensor field Ā on G. The left-
translation Lx : G → G with y 7→ xy is a diffeomorphism for all x ∈ G. Accordingly, the
mapping dLx|e : TeG → TxG is a vector space isomorphism for all x ∈ G. Thus, the smooth
(0, 2)-tensor field B̄ originating from a scalar product B on TeG defines a scalar product at every
point x ∈ G, i.e. B̄ is a metric on G.

B̄x : TxG × TxG → R

↓ dLζ(x)|x ↓ dLζ(x)|x ↑ Id

B : TeG × TeG → R

for all x ∈ G.

The tuple (G, B̄) defines a semi-Riemannian manifold. The left-translation Lx : G → G is an
isometry for all x ∈ G. Just as the metric B̄ is left-invariant, all geometric tensor fields are
left-invariant. For instance, the Riemannian curvature is R̄o for an appropriate (1, 3)-tensor Ro

on TeG. In the next section, we yield Ro in terms of the commutator tensor ad, and the scalar
product B on g in the more general context of homogeneous triples.
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1.4 Homogeneous spaces, pairs and triples

A subgroup H ⊂ G of a Lie group G that is also a closed subset of G, is a closed Lie subgroup.
A homogeneous space is the coset manifold G/H = {xH : x ∈ G}, where G is a Lie group,

and H ⊂ G is a closed Lie subgroup, together with the mappings

projection to G/H π : G → G/H with x 7→ xH,

left-action on G/H τ : G×G/H → G/H with (x, yH) 7→ xyH.

The following theorem from [Bo86] p.166 allows us to treat the factor space G/H as a
differentiable manifold, and π, τ as smooth mappings.

Theorem 1.8. There exists a unique C∞-manifold structure on the space G/H with the prop-
erties: (i) π is smooth and (ii) x ∈ G is in the image σ(V ) of a C∞ section V , σ on G/H.

The natural action τ : G×G/H → G/H is a smooth action of G on G/H with this structure.
The dimension of G/H is dimG− dimH.

Analogous to Lx : G → G with y 7→ xy for x ∈ G, we specialize the left-action to τx : G/H →
G/H with yH 7→ xyH for x ∈ G. The identities π(xy) = τx(πy), and τxτy(zH) = τxy(zH) for
all x, y, z ∈ G are immediate consequences of the definition. We call H the isotropy group.

For u ∈ g we define the fundamental vector field ũ ∈ X(G/H) by

ũxH = dtτ(exp tu, xH)|t=0 for all xH ∈ G/H, (1.19)

where exp : g → G is the exponential mapping. ũ is a Killing vector field on G/H, and
[ũ, ṽ]X = − ˜[u, v]g for all u, v ∈ g, [ON83] p.255.

On a Lie group G, we made use of the vector space isomorphisms dLζ(x)|x, and dLx|e for all
x ∈ G to extend an (r, s)-tensor A on g = TeG to the left-invariant tensor field Ā on G. There
are no restrictions on the tensor A. The framework of homogeneous spaces provides the vector
space isomorphisms

dτζ(x)|xH : TxHG/H → ToG/H, and dτx|o : ToG/H → TxHG/H for all x ∈ G,

where o = eH denotes the distinguished coset. The scheme for a (1,2)-tensor A on ToG/H is

ĀxH : TxHG/H × TxHG/H → TxHG/H

↓ dτζ(x)|xH ↓ dτζ(x)|xH ↑ dτx|o
A : ToG/H × ToG/H → ToG/H

for all x ∈ G.

However, if H 6= {e} the choice of y ∈ G with τζ(y)(xH) = o is not unique. In fact, any group
element y = xh with h ∈ H maps τζ(y)(xH) = ζ(h)ζ(x)xH = o. The diagram is well defined iff

A : ToG/H × ToG/H → ToG/H

↓ dτζ(h)|o ↓ dτζ(h)|o ↑ dτh|o
A : ToG/H × ToG/H → ToG/H

for all h ∈ H
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commutes. Any (r, s)-tensor A on ToG/H that is stable under the change of basis by dτh|o for all
h ∈ H extends to the unique left-invariant tensor field Ā on G/H by the procedure illustrated
above.

Left-invariant metrics B̄ on a homogeneous space G/H are of particular interest. Such a
metric originates from a single scalar product B on ToG/H. The tuple (G/H, B̄) defines a
semi-Riemannian manifold. The Koszul formula (1.4) restricted to fundamental vector fields
becomes

2 〈∇ṽũ, w̃〉 = −〈[ũ, ṽ]X, w̃〉 − 〈ũ, [w̃, ṽ]X〉 − 〈[w̃, ũ]X, ṽ〉

= 〈 ˜[u, v]g, w̃〉+ 〈ũ, ˜[w, v]g〉+ 〈 ˜[w, u]g, ṽ〉 for all u, v, w ∈ g.
(1.20)

According to (1.8), the Riemannian curvature simplifies to

Rũ,ṽw̃ = ∇∇w̃ ṽũ−∇∇w̃ũṽ +∇w̃[ũ, ṽ]X

= ∇∇w̃ ṽũ−∇∇w̃ũṽ −∇w̃
˜[u, v]g for all u, v, w ∈ g.

(1.21)

The curvature is left-invariant, i.e. R = R̄o. Properties such as Riemannian-, and Ricci-flatness
deduce from Ro.

The homogeneous pair associated to a homogeneous space G/H is the tuple (g, h), where g is
the Lie algebra of G, and h ⊂ g is the maximal Lie subalgebra with exp h ⊂ H. By m, we denote
a vector space complement so that g = h⊕m. Since H is a closed Lie subgroup, the homogeneous
space G/H can be locally parametrized by a submanifold M of G that consists of the points
expm ∈ G for vectors m ∈ m in a neighborhood of 0 ∈ m. We identify m = TeM = ToG/H, and
M ' M/H ⊂ G/H as an open subset of the homogeneous space.

We agree on the following convention. A linear mapping A : g → g induces A|V : V → g,
and AV : V → V for a subspace V ⊂ g. A|V is just the restriction to elements in V , whereas
AV = πV ◦A|V .

The transformation of ToG/H by dτh|o for h ∈ H corresponds to the transformation of m

by Ad(h)m for h ∈ H. The following diagram commutes

ToG/H → g/h → m

↑ dτh|o ↑ Âd(h) ↑ Ad(h)m

ToG/H → g/h → m

for all h ∈ H,

where Âd : H → Aut(g/h) is the induced adjoint representation on the quotient g/h, since h is
Ad(H)-invariant. This motivates the linear isotropy group I, and the linear isotropy algebra i,
as

I = {Ad(h)m : h ∈ H} ⊂ GL(m)

i = {ad(h)m : h ∈ h} = {m 7→ [h,m]m : h ∈ h} ⊂ gl(m).

We call tensors on m ρ-invariant that are Ad(h)m-invariant for all h ∈ H. For instance, denote
with B,C tensors on m of rank (0,2), and (1,2). Then, B, C are ρ-invariant if

B(α.u, α.v) = B(u, v), and α−1.C(α.u, α.v) = C(u, v) for all u, v ∈ m, α ∈ I,
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Equivalently, B,C on m are ρ-invariant if

B(X.u, v) + B(u,X.v) = 0,

−X.C(u, v) + C(X.u, v) + C(u,X.v) = 0 for all u, v ∈ m, X ∈ i.

The isotropy representation is ρ : h → gl(m) with ρ(h) = ad(h)m for h ∈ h.
A ρ-invariant tensor on m uniquely extends to a left-invariant tensor field on G/H. Denote

with B̄ the left-invariant metric on G/H, that originates from a ρ-invariant scalar product B

on m. We consider the semi-Riemannian manifold (G/H, B̄). In the sequel, we derive a formula
for the Riemannian curvature tensor Ro at o ∈ G/H in terms of the commutator of g, and the
scalar product B on m.

We introduce the Levi-Civita connection tensor Λ : g → gl(m) with

Λ(u).vm = (∇ṽũ)o for all u, v ∈ g,

which represents the Levi-Civita connection ∇ in the point o ∈ G/H. According to (1.20),

2B(Λ(u).vm, wm) = B([u, v]m, wm) + B(um, [w, v]m) + B([w, u]m, vm) for all u, v, w ∈ g.

The tensor Λ apparently decomposes as

Λ(u).vm =
1
2
[u, v]m + ν(u, v) for all u, v ∈ g, (1.22)

where ν : g× g → m is uniquely determined by

2B
(
ν(u, v), wm

)
= B

(
um, [w, v]m

)
+ B

(
[w, u]m, vm

)
for all u, v, w ∈ g. (1.23)

Interchanging u, v in the rhs. and using that B is symmetric gives the symmetry ν(u, v) = ν(v, u)
for all u, v ∈ g. Let h, h1, h2 ∈ h, m ∈ m, and w ∈ g. We yield

2B
(
ν(h1, h2), wm

)
= B

(
0, [w, h2]m

)
+ B

(
[w, h1]m, 0

) ⇒ ν|h×h = 0 (1.24)

2B
(
ν(h,m), wm

)
= B

(
[w, h]m, m

)
= B

(
[h, m]m, wm

) ⇒ ν(h, m) =
1
2
[h,m]m, (1.25)

where the last transformation follows from the ρ-invariance of B.
Let u, v ∈ m, h ∈ h, then B(um, [h, v]m)+B([h, u]m, vm) = −B([h, um], vm)+B([h, um], vm) =

0. Thus, the restriction of (1.23) to elements u, v, w ∈ m completely determines ν|m×m. With
respect to a basis on m, the equation reduces to a system of linear equations in the coefficients
of ν|m×m.

In particular, we obtain

Λ(h).um =
1
2
[h, u]m + ν(h, u) =

1
2
(
[h, u]m + [h, u]m

)
= [h, u]m for all h ∈ h, u ∈ g.

Restricted to fundamental vector fields, (1.3) becomes 〈∇ṽũ, w̃〉 + 〈ṽ,∇w̃ũ〉 = 0 for all
u, v, w ∈ g. Hence, B is Λ(u)-invariant for all u ∈ g, i.e. B

(
Λ(u).vm, wm

)
+ B

(
vm,Λ(u).wm

)
= 0

for all v, w ∈ g.
According to (1.21), the Riemannian curvature in o ∈ G/H evaluates as

Ro(um, vm).wm = Λ(u).Λ(v).wm − Λ(v).Λ(u).wm − Λ
(
[u, v]g

)
.wm for all u, v, w ∈ g.
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Thus, all curvature endomorphisms are determined by

Ro(u, v) =
[
Λ(u), Λ(v)

]
gl
− Λ

(
[u, v]

)
for all u, v ∈ m. (1.26)

Algebraically, the three curvature identities in (1.6) follow from (i) the skew symmetry of the
definition (1.26), (ii) the Jacobi identity restricted to elements of m, and (iii) the Λ(u)-invariance
of B for all u ∈ g.

The Ricci curvature at o ∈ G/H is the tensor Rico : m×m → R determined by

Rico(u, v) = tr (w 7→ Ro(w, u).v) for all u, v ∈ m.

A homogeneous pair (g, h) is reductive, if there exists a complement m with g = h ⊕ m, so
that [h,m] ⊂ m. With respect to such a decomposition, the adjoint representation Ad restricted
to elements of H is of the form

Ad(h) =


 ∗ 0 h

h

0
m

∗ m


 where the ∗’s denote invertible matrices that depend on h ∈ H.

The linear isotropy algebra consists of the mappings ad(h)m ∈ gl(m) defined by m 7→ [h,m] for
h ∈ h, m ∈ m, in contrast to m 7→ [h,m]m. All homogeneous pairs in this thesis are reductive.

A homogeneous pair (g, h) is symmetric, if there exists a vector space decomposition g =
h ⊕ m, and a Lie algebra automorphism α : g → g with αh = Idh, and αm = −Idm. Let h ∈ h,
and m,m1,m2 ∈ m. The relations

[h, m] ⊂ m

[m,m] ⊂ h



 follow from





α[h,m] = [αh, αm] = [h,−m] = −[h, m]

α[m1,m2] = [αm1, αm2] = [−m1,−m2] = [m1, m2].

The automorphism α is the starting point to classify Lorenzian symmetric triples, [CW70]. The
classification is also carried out in [Ne02].

A homogeneous pair (g, h) is effective, if h contains no non-trivial ideal of g. An ideal of
a Lie algebra g is a subspace j ⊂ g with [j, g] ⊂ j. The trivial ideals of g are {0}, and g. All
homogeneous pairs in this thesis are effective.

Two homogeneous pairs (g1, h1), and (g2, h2) are isomorphic, if there exists a Lie algebra
isomorphism α : g2 → g1 so that α(h2) = h1.

A homogeneous triple (g, h, B) is a homogeneous pair (g, h) combined with a ρ-invariant
scalar product B on a vector space complement m with g = h ⊕ m. We have illustrated that,
locally, a homogeneous triple (g, h, B) uniquely determines the corresponding semi-Riemannian
homogeneous space G/H with metric B̄. Therefore, we shall call two homogeneous triples
(g1, h1, B1), and (g2, h2, B2) isomorphic, if they locally induce the same semi-Riemannian ho-
mogeneous space. Equivalently, two homogeneous triples are isomorphic if there exists a Lie
algebra isomorphism α : g2 → g1 so that

• α(h2) = h1, and

• B1(αm.u, αm.v) = B2(u, v) for all u, v ∈ m2, where αm : m2 → m1 denotes the mapping
induced by α.
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Figure 1.3 : We illustrate V , and M from Example 1.10. Also, we plot sets of the form xV for
several x ∈ M .

Remark 1.9. To show that (g1, h1, B1), and (g2, h2, B2) are isomorphic, we provide a Lie algebra
isomorphism α : g2 → g1 in matrix form as

α =


 C E h1

h2

0
m2

D m1


 with C ∈ Rh×h, D ∈ Rm×m invertible, and E ∈ Rh×m,

and check the matrix equation DT .B1.D = B2. The letters h,m denote the dimensions dim hi,
and dimmi, that are the same for i = 1, 2. D corresponds to αm. 3

Example 1.10. Locally, there exists a diffeomorphism of SL(R2) onto U ⊂ R3 with e :=
(1, 0, 0) ∈ U , so that the group action of SL(R2) coincides with

a ◦ b =
(

a1b1 + a2b3

a3b2 + 1
,
a2 + a1b2

a3b2 + 1
,
a3b1 + b3

a3b2 + 1

)

for points a = (a1, a2, a3), b = (b1, b2, b3) in U close to e. The coordinate e maps e ◦ a = a,
and a ◦ e = a for all a ∈ U , thus acts as the neutral element. All terms we state in the sequel,
are valid only for points sufficiently close to e ∈ U . For instance, the inverse mapping locally
coincides with ζ(a) = 1

a1
(1,−a2,−a3).

We have introduced sl(R2) in Example 1.6. If we choose Xi := ∂ai|e as the basis for the Lie
algebra g = TeU ' TeR3, the commutator on elements Xi matches the table in the example.
For instance, [X2, X3] = 2X1.

We identify U ⊂ R3 ' g. Then, for a vector X ∈ g, the image of the exponential mapping
exp tX = λX(t) ·X for t ∈ [−ε, ε] is a straight line in U . However, the function λX : [−ε, ε] → R
depends on the vector components of X in a non-trivial way.
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Figure 1.4 : We plot the fundamental vector fields X̃1 = (x1,−x2), X̃2 = (1,−x2
2), and X̃3 =

(−x2
1, 1) on M . Any fundamental vector field ũ for u ∈ g is just a linear combination of the X̃i.

The adjoint representation Ad is of the form

Ad(a) =
1

a1 − a2a3




a1 + a2a3 −2a1a3 2a2

−a1a2 a2
1 −a2

2

a3 −a2
3 1


 for a ∈ U . (1.27)

We intend to locally model the homogeneous space SL(R2)/H, where H is the 1-dimensional
closed Lie subgroup H =

{(
et 0
0 e−t

)
: t ∈ R} ⊂ SL(R2). The associated homogeneous pair is(

sl(R2),
{(

t 0
0 −t

)
: t ∈ R})

.
Denote with V = {(a1, 0, 0) : a1 ∈ R∗}∩U the subset of U , which parametrizes H. Naturally,

we identify h = 〈X1〉 ⊂ g. We choose m = 〈X2, X3〉 as the vector space complement, so that
g = h⊕ m. The set M = {(1, x1, x2) : xi ∈ R} ∩ U coincides with the image of the exponential
map restricted to vectors in m close to 0 ∈ g. Let the xi for i = 1, 2 be the coordinates on M .
The point o ∈ M has coordinates (0, 0).

For points sufficiently close to e ∈ U , the projection and the left-action coincide with

π(a) =
(

a2,
a3

a1

)
, and τ(a, x) =

(
a2 + a1x1

a3x1 + 1
,

a3 + x2

a1 + a2x2

)
.

Elements in the linear isotropy group are of the form Ad
(
(a1, 0, 0)

)
m

for (a1, 0, 0) ∈ V .
According to (1.27), we yield

Ad
(
(a1, 0, 0)

)
m

=




1 0 0

0 a1 0

0 0 1
a1




m

=


 a1 0

0 1
a1


 for (a1, 0, 0) ∈ V .

Since h is 1-dimensional, the isotropy representation ρ : h → gl(m) with ρ(h) = ad(h)m for
h ∈ h is determined by the value on the basis element X1 ∈ h. The commutator relations

[X1, X2]m = X2

[X1, X3]m = −X3





define ρ(X1) =


 1 0

0 −1


 .
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The ρ-invariance condition ρ(X1)T .B + B.ρ(X1) = 0 of a (0, 2)-tensor B : m × m → R on m

shows that there is 1 degree of freedom, if B is moreover symmetric. The general setup

B =


 β1 β2

β2 β3


 results in ρ(X1)T .B + B.ρ(X1) =


 2β1 0

0 −2β3




for coefficients βi ∈ R. The ρ-invariance demands β1, β3 = 0. We substitute β = β2. B defines
a ρ-invariant scalar product on m if β 6= 0. Then, the differential

dτζ(x)|xV =
1

1− x1x2




1
a1

0

0 a1


 extends B to B̄ =

1
(1− x1x2)2


 0 β

β 0


 ,

which defines a left-invariant metric on M . The Riemannian curvature tensor field of (M, B̄) is

R(∂x1, ∂x2) =
1

(1− x1x2)2


 −2 0

0 2


 , while Ric =

−2
β

B̄.

Alternatively, we compute ν : g× g → m as

ν =

X1 X2 X3

X1 0 X2
2 −X3

2

X2
X2
2 0 0

X3 −X3
2 0 0

to yield the Levi-Civita connection tensor Λ : g → gl(m) as Λ(X1) = ρ(X1) =
(

1 0
0 −1

)
, and

Λ(X2) = Λ(X3) = 0. Recall that m = 〈X2, X3〉, so that

Ro(X2, X3) =
[
Λ(X2), Λ(X3)

]
gl
− Λ

(
[X2, X3]

)
= −Λ

(
[X2, X3]

)
= −Λ(2X1) =


 −2 0

0 2


 ,

confirms R(∂x1, ∂x2)o, indeed! 3
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Chapter 2

Previous work

The collections of pairwise non-isomorphic homogeneous pairs, and triples in [DK95], and [Ko01]
by B. Komrakov, and B. Doubrov make an ideal playground to get acquainted with homogeneous
spaces. The classification of 4-dimensional homogeneous pairs in [Ko01] serves as the starting
point to detect all 4-dimensional Lorentzian homogeneous triples with isotropy dimh ≥ 1, and
curvature Ro 6= 0,Rico = 0.

To several publications we point later on: M. Cahen and N. Wallach classify the Lorentzian
symmetric triples (g, h, B) with curvature Ro 6= 0,Rico = 0 early in [CW70]. Any such triple is
isomorphic to

(g, h, Ln+2) with g = hen oδ R, and h = 〈p1, . . . , pn〉 .

These symmetric triples are covered by our more general class of homogeneous triples, which we
introduce in Chapter 4. Corollary 4.12 treats the geometry. In [Ne03], T. Neukirchner reproduces
the classification of Lorentzian solvable symmetric triples with curvature Ro 6= 0, Rico = 0.

M. Fels and A. Renner establish the following result in [FR05]: Any 4-dimensional Lorentzian
homogeneous triple with isotropy dim h ≥ 1, and curvature Ro 6= 0,Rico = 0 is reductive. This
is in accordance with our more descriptive Corollary 5.11.

2.1 Low-dimensional semi-Riemannian homogeneous spaces

In [DK95], B. Doubrov and B. Komrakov classify the semi-Riemannian homogeneous spaces
(G/H, B̄) of dimension dimG/H ≤ 3. However, they do not cover 3-dimensional Lie groups
with left-invariant metric. Their approach is guided by the following result, [DK95] p.3.

Theorem 2.1. Let (g, h, B) be a semi-Riemannian homogeneous triple of dimension ≤ 4. There
exists a unique semi-Riemannian homogeneous space (G/H, B̄) corresponding to (g, h, B), such
that the manifold G/H is simply connected and H is connected.

First, the authors classify the homogeneous triples (g, h, B) of dimension ≤ 3. The clas-
sification is an exhaustive list of pairwise non-isomorphic homogeneous triples (g, h, B). The
authors omit the case dim g = 3, dim h = 0. Secondly, they construct the homogeneous spaces
(G/H, B̄), corresponding to each homogeneous triple, such that G/H is simply connected and
H is connected.

The classification of homogeneous triples is stated without derivation. The description of
the homogeneous spaces is sparse. There are gaps in the constructions.

Example 2.2. The homogeneous triples (g, h, B) of the form

g = he1 oδ R, h = 〈p1〉 , and B has index 1 (2.1)
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Table 2.1 : The derivation δ : he1 → he1 for 3.1, 3.3, 3.4, and 3.5. The real Jordan decomposition
J (δ) of the matrices δ are shown in the bottom row.

Index 3.1 3.3 3.4 3.5

−1 ≤ α < 1 0 ≤ α

δ




0 0 0

0 0 0

1 0 0







0 0 −1

0 2 0

1 0 2







0 0 −α

0 α + 1 0

1 0 α + 1







0 0 −(α2 + 1)

0 2α 0

1 0 2α




J (δ)




0 1 0

0 0 0

0 0 0







1 1 0

0 1 0

0 0 2







1 0 0

0 α 0

0 0 α + 1







α 1 0

−1 α 0

0 0 2α




are indexed in the classification of [DK95] as 3.1, 3.3, 3.4, and 3.5. The Lie algebras g differ
only in the derivation δ : he1 → he1. Table 2.1 lists the different derivations as (3× 3)-matrices
with respect to the basis he1 = 〈p1, h, q1〉. In Corollary 5.8, we confirm that these derivations
indeed classify the homogeneous triples of the form (2.1). The Lorentzian scalar product on
m = 〈h, q1, z〉 is B = L3 for all four types 3.1, 3.3, 3.4, and 3.5.

For instance, the homogeneous triple (g, h, B) with index 3.4 is characterized by

ad =

p1 h q1 z

p1 0 0 h −q1

h 0 0 0 −(α + 1)h

q1 −h 0 0 αp1 − (α + 1)q1

z q1 (α + 1)h −αp1 + (α + 1)q1 0

, and B =




0 0 1

0 1 0

1 0 0


.

The pseudo-Riemannian homogeneous spaces (G/H, B̄) corresponding to each of the homo-
geneous triples 3.3, 3.4, 3.5, such that G/H is simply connected and H is connected, share the
following properties: The Lie group G is diffeomorphic to R4. The manifold G/H is diffeomor-
phic to R3.

According to the paper, the action τ : G × G/H → G/H varies only slightly among these
homogeneous spaces. Unfortunately, the authors provide no derivation for τ . This is fatal, since
τ – as stated in the paper – is not well-defined. However, the authors convert each derivation
δ to Jordan1 normalform, which we reproduce in Table 2.1 as J (δ). The Jordan normalform
seems to be advantageous to design the left-action τ . For this reason, the authors separate 3.3
from 3.4(α = 1).

1 Marie Ennemond Camille Jordan, * 5. Jan 1838 in Lyon, † 21. Jan 1922 in Paris
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The authors declare the metric B̄ on G/H ' R3 as

B̄ =




0 0 1

0 1 0

1 0 f(x1, x2)


 , defined by

Index f(x1, x2) =

3.3 −4x1 +x2
2

3.4 −2α(α + 1)x1 +αx2
2

3.5 −4αx1 +(2α2 + 1)x2
2

We have confirmed that the Riemannian curvature R of the semi-Riemannian manifold (R3, B̄)
in 0 ∈ R3 coincides with Ro computed in local terms using (1.26). In fact, Corollary 4.12 states
the curvature tensors Ro,Rico for these types of spaces. 3

2.2 Einstein equation on four-dimensional homogeneous pairs

In [Ko95], B. Komrakov classifies the homogeneous pairs (g, h) of dimension 4 with isotropy
dim h ≥ 1. In [Ko01], he investigates the extentions of the homogeneous pairs to homogeneous
triples. Motivated by the relevance in physics, the author states the solutions to the Einstein-
Maxwell2 equation on each homogeneous pair. In local terms, the Einstein-Maxwell equation is

Rico − λB = MΩ with λ ∈ R, (2.2)

where B, Rico,MΩ are symmetric (0, 2)-tensors on m. B is a ρ-invariant scalar product on m.
The Ricci curvature Rico, and MΩ are completely determined by the commutator tensor ad on g

and the scalar product B. In the thesis, we restrict to Lorentzian homogeneous triples (g, h, B)
with solutions to (2.2) subject to

Rico = 0, and MΩ = 0. (2.3)

Then, the Einstein-Maxwell equation reduces to Rico = λB. Consult [ON83] pp.336 for the
meaning of MΩ 6= 0 in general relativity theory.

We evince how the material in [Ko01] helps us to detect homogeneous triples with (2.3). In
the first chapter of [Ko01] p.42-121, B. Komrakov lists all pairwise non-isomorphic homogeneous
pairs (g, h) of dimension 4 with dim h ≥ 1.

Example 2.3. The homogeneous pair (g, h) indexed as 2.52.4 is part of the classification, [Ko01]
p.94. The Lie algebra is g = he2 oδ R with basis g = 〈p1, p2, h, q1, q2, z〉. The Lie subalgebra is
h = 〈p1, q2〉. The derivation δ : he2 → he2 is the linear mapping defined by the matrix

δ =




0 0 0 s + 1 0

0 0 0 0 1

0 0 0 0 0

−1 0 0 0 0

0 s− 1 0 0 0




, 0 ≤ s ∈ R,

2 James Clerk Maxwell, * 13. Jun 1831 in Edinburgh, † 5. Nov 1879 in Cambridge
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with respect to 〈p1, p2, h, q1, q2〉. Homogeneous pairs with different constants s are non-isomorphic.
Recall from the introduction that a pair (g, h) is characterized by the tensor ad on g. To

avoid any misconception, the author states the commutator on g as

ad =

e1 e2 u1 u2 u3 u4

e1 0 0 0 u1 −u2 0

e2 0 0 0 0 u4 −u1

u1 0 0 0 0 0 0

u2 −u1 0 0 0 (s + 1)e1 0

u3 u2 −u4 0 (−s− 1)e1 0 (1− s)e2

u4 0 u1 0 0 (s− 1)e2 0

for 0 ≤ s ∈ R.

The table matches the commutator of he2 oδ R if we set e1 = q2, e2 = p1, u1 = −h, u2 = p2,
u3 = z, and u4 = q1. 3

In the second chapter, the author states all possible solutions to the Einstein-Maxwell equa-
tion on each of the 4-dimensional homogeneous pairs (g, h). The solutions are given in terms of
B, λ,Ω. The skew symmetric (1,1)-tensor Ω on m relates to the MΩ as

MΩ = −ΩT .B−1.Ω. (2.4)

In case B is of index 1, Lemma 1.3 warrants the equivalence MΩ = 0 ⇔ Ω = 0. Thus, no solution
to the Einstein-Maxwell equation B, λ, Ω with Ω 6= 0 leads to a homogeneous triple (g, h, B)
subject to (2.3).

Example 2.4. We continue the discussion of the homogeneous pair from the previous example.
Any solution to the Einstein-Maxwell equation in terms of B, λ,Ω is of the form, [Ko01] p.156,

B =




0 0 a 0

0 a 0 0

a 0 b 0

0 0 0 a




, Ω =




0 0 0 0

0 0 α 0

0 −α 0 β

0 0 −β 0




, λ = 0,

where a, b, α, β ∈ R satisfy the relations 2a = −(α2 + β2), and α2 + β2 6= 0.
Substituting λ = 0 in the Einstein-Maxwell equation, we obtain Rico = MΩ, where

MΩ = −ΩT .B−1.Ω =




0 0 0 0

0 0 0 0

0 0 −(α2 + β2)/a 0

0 0 0 0




.

However, setting Ω = 0 necessarily annihilates α, β, which violates the condition α2+β2 6= 0.
Thus, the pair (g, h) does not extend to a homogeneous triple (g, h, B) subject to (2.3). 3
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Chapter 3

Lorentzian homogeneous triples from Komrakov’s list

We are interested in homogeneous triples (g, h, B) with decomposition g = h ⊕ m, that have
certain geometric properties:

B has index 1 the scalar product B on m is Lorentzian

Ro 6= 0 not Riemannian-flat

Rico = 0 Ricci-flat





(3.1)

If dimm ≤ 3, no such triples can exist, since for semi-Riemannian manifolds of dimension
≤ 3 the implication Ric = 0 ⇒ R = 0 holds. For instance, consider a triple of dimension
3. A (1, 3)-tensor Ro on m that satisfies the curvature identities (1.6) locally has 6 degrees of
freedom. Let B be a Lorentzian scalar product on m. We choose a basis on m = 〈u1, u2, u3〉, so
that B = L3. Then, the curvature Ro, and Rico are of the form

Ro(u1, u2) = Ro(u1, u3) = Ro(u2, u3) = Rico =


−c4 −c2 0

−c1 0 c2

0 c1 c4







−c6 −c5 0

−c4 0 c5

0 c4 c6







−c5 −c3 0

−c2 0 c3

0 c2 c5







c1 −c4 −c2 − c6

−c4 −2c2 −c5

−c2 − c6 −c5 c3




with coefficients ci ∈ R for i = 1, . . . , 6. We have Rico = 0 ⇒ Ro = 0, because demanding
Rico = 0 eliminates all coefficients ci.

In [Ko01], B. Komrakov publishes a list of all pairwise non-isomorphic 4-dimensional homo-
geneous pairs (g, h) with dim h ≥ 1. In addition, the author references those pairs, which admit
a ρ-invariant Lorentzian scalar product on m. According to Theorem II.2.2 [Ko01] p.164, there
are 63 such pairs.

In the next section, we argue that 10 of the 63 homogeneous pairs in question extend to
homogeneous triples (g, h, B) of the desired geometry (3.1). Suppose the classification of 4-
dimensional homogeneous pairs in [Ko01] is correct. Then, a sequence of lemmas in Section
3.2 proves that any 4-dimensional Lorentzian homogeneous triple with curvature Ro 6= 0, and
Rico = 0 is isomorphic to

(g, h, L4) with g = hen × Rm oδ R, and h = 〈p1, . . . , pn〉

for either n = 1,m = 1, or n = 2,m = 0.
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3.1 Selection of homogeneous pairs

Section 2.2 provides a concise overview on B. Komrakov’s work [Ko01]. A homogeneous pair in
his classification is explicitly characterized by the commutator tensor ad. Additionally, for each
pair the author states all possible solutions to the Einstein-Maxwell equation

Rico − λB = MΩ with λ ∈ R, (3.2)

in terms of B, λ, Ω, and MΩ = −ΩT .B−1.Ω. Having ad, B, Ω, λ at hand, there are simple criteria
for a pair (g, h) not to extend to a triple (g, h, B) with geometric properties (3.1).

According to Theorem II.2.2 [Ko01] p.164, 63 homogeneous pairs extend to Lorentzian ho-
mogeneous triples. However, we show that 47 of these 63 triples do not satisfy Ro 6= 0, or
Rico = 0 by applying one of the arguments below.

• [m, m] = 0 Any homogeneous triple (g, h, B) with decomposition g = h⊕m and [m, m] =
{0} is Riemannian-flat, i.e. Ro = 0. Lemma 3.1 below gives the proof. [m, m] = {0} is
determined easily from the commutator tensor ad.

• λ 6= 0 Non-zero λ in the Einstein-Maxwell equation Rico−λB = MΩ causes either Rico 6=
0, or MΩ 6= 0. However, we demand Rico = 0, and MΩ = 0.

• |B| = 0 The entries of Ω and B sometimes are correlated. Setting Ω = 0 might cause the
determinant |B| = 0 to vanish. Then, B does not define a scalar product on m.

• |B| > 0 Similarly, the correlation between Ω and B might enforce |B| > 0. But, the
determinant of the matrix associated to a Lorentzian scalar product is always negative.

• Ro = 0 This label refers to pairs whose Lorentzian, Ricci-flat extensions are necessarily
Riemannian-flat. The Riemannian curvature Ro is not stated explicitly in [Ko01].

Table 3.1 minutes the complete selection process. Due to the extent, we do not derive the
properties of all 63 pairs in this thesis. However, we demonstrate the application of each criteria
in an adequate example. Ambitious readers, who are in possession of a copy of [Ko01] may
easily verify the selection process using Table 3.1.

Lemma 3.1. Any homogeneous triple (g, h, B) with decomposition g = h⊕m, and [m,m] = {0}
is Riemannian-flat, i.e. Ro = 0.

Proof. The Riemannian curvature tensor Ro of a triple (g, h, B) involves the computation of the
terms ν,Λ. First, we show that [m, m] = {0} ⇒ ν(u, v) = 0 for all u, v ∈ m. The implication is
true, since ν|m×m is determined by

2B(ν(u, v), w) = B(u, [w, v]m) + B([w, u]m, v) for all u, v, w ∈ m

= B(u, 0) + B(0, v) = 0.

To obtain Ro(u, v) =
[
Λ(u), Λ(v)

]
gl
− Λ

(
[u, v]

)
= 0 for all u, v ∈ m, it clearly suffices to show

Λ(u) = 0 for all u ∈ m. Note, Λ(u).v = 1
2 [u, v]m + ν(u, v) = 0 for all u, v ∈ m.
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Table 3.1 : Indices of homogeneous pairs that admit a ρ-invariant Lorentzian scalar product
on m according to Theorem II.2.2 [Ko01] p.164. A mark in the table indicates which selection
criteria applies to a homogeneous pair. A tuple (i, j) refers to Example i.j in the thesis.

Index [h, m] 6⊂ m [mm] = 0 λ 6= 0 |B| = 0 |B| > 0 Ro = 0 fine

1.11.2 •
1.11.5 • (3.4)

1.11.6 •
1.11.7 •
1.11.10 •
1.12.2 • (3.7)

1.12.6 •
1.12.7 •
1.12.8 • (3.7)

1.12.9 •
1.12.10 •
1.12.12 •
1.13.1 •
1.14.1 •
1.41.2 • • (3.7)

1.41.3 • • (3.3)

1.41.4 • •
1.41.8 •
1.41.9 •
1.41.10 •
1.41.11 •
1.41.12 • (5.3)

1.41.13 •
1.41.14 •
1.41.15 • (3.5)

1.41.16 •
1.41.17 •
1.41.18 •
1.41.19 •
1.41.20 •
1.41.21 •
1.41.22 •
1.41.23 • (5.3)

1.41.24 •
1.41.25 •
1.41.26 • (3.2)

2.12.1 •
2.12.2 •
2.12.3 •
2.12.4 •
2.12.5 •
2.12.6 •
2.41.2 •
2.41.3 •
2.52.1 • •
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Table 3.1 (continued)

index [h, m] 6⊂ m [mm] = 0 λ 6= 0 |B| = 0 |B| > 0 Ro = 0 fine

2.52.2 •
2.52.3 •
2.52.4 • (2.4)

2.52.5 •
2.52.6 •
2.52.7 •
3.22.1 • •
3.22.2 •
3.32.1 • (3.6)

3.32.4 •
3.51.1 •
3.51.4 •
3.52.1 •
3.52.4 •
4.12.1 •
6.13.1 •
6.13.2 •
6.13.3 •

Within the following examples, we denote the basis elements of the Lie algebra g = h ⊕ m

by h = 〈e1, . . . , edim h〉 and m = 〈u1, . . . , u4〉.
Example 3.2. [m,m] = 0 In [Ko01] p.73, the homogeneous pair (g, h) with index 1.41.26 is
defined by

ad =

e1 u1 u2 u3 u4

e1 0 0 u1 u2 0

u1 0 0 0 0 0

u2 −u1 0 0 0 0

u3 −u2 0 0 0 0

u4 0 0 0 0 0

.

We notice [m,m] = 0, thus Ro = 0 by the previous lemma. 3

Example 3.3. λ 6= 0 Proposition 1.41.3 in [Ko01] p.143 states that any solution of the Einstein-
Maxwell equation on the pair (g, h) defined by

ad =

e1 u1 u2 u3 u4

e1 0 0 u1 u2 e1

u1 0 0 0 0 2u1

u2 −u1 0 0 e1 u2

u3 −u2 0 −e1 0 0

u4 −e1 −2u1 −u2 0 0

has the form





B =




0 0 −a 0

0 a 0 0

−a 0 d c

0 0 c d




,

Ω = 0,

λ = −3
d
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with coefficients a, c, d ∈ R such that detB 6= 0.
Since λ = −3

d 6= 0, we either have Rico 6= 0, or MΩ 6= 0 by the Einstein-Maxwell equation.
In this particular case, MΩ = −ΩT .B−1.Ω = 0, but Rico = λB 6= 0. 3

Example 3.4. |B| = 0 In [Ko01] p.43, the homogeneous pair (g, h) with index 1.11.5 is defined
by

ad =

e1 u1 u2 u3 u4

e1 0 u1 0 −u3 0

u1 −u1 0 0 e1 0

u2 0 0 0 0 u2

u3 u3 −e1 0 0 0

u4 0 0 −u2 0 0

.

Proposition 1.11.5, [Ko01] p.128, states that any solution of the Einstein-Maxwell equation on
(g, h) has the form:

B =




0 0 a 0

0 b 0 c

a 0 0 0

0 c 0 d




, Ω =




0 0 α 0

0 0 0 β

−α 0 0 0

0 −β 0 0




, λ =
β2 − b

bd− c2
,

where

α2 =
b− β2

bd− c2
a2 − a. (3.3)

Setting α, β = 0 in Ω, simplifies λ = − b
bd−c2

. We require λ = 0, which we enforce by b = 0.
But then relation (3.3) reduces to a = 0, which kills the determinant of B. 3

Example 3.5. |B| > 0 In [Ko01] p.66, the homogeneous pair (g, h) with index 1.41.15 is
defined by

ad =

e1 u1 u2 u3 u4

e1 0 0 u1 u2 0

u1 0 0 0 0 0

u2 −u1 0 0 e1 + u4 0

u3 −u2 0 −e1 − u4 0 u1

u4 0 0 0 −u1 0

.

Proposition 1.41.15, [Ko01] p.144, states that any solution of the Einstein-Maxwell equation on
(g, h) has the form:

B =




0 0 −a 0

0 a 0 0

−a 0 b c

0 0 c d




, Ω =




0 0 0 0

0 0 α 0

0 −α 0 β

0 0 −β 0




, λ = 0, where 1 +
d

2a
=

α2

a
+

β2

d
.
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Setting α, β = 0 in Ω, we retrieve the relation d = −2a, but then the determinant |B| =
−a3d = 2a4 is positive. Such a matrix B does not define a Lorentzian scalar product. 3

Example 3.6. Ro = 0 In [Ko01] p.102, the homogeneous pair (g, h) with index 3.32.1 is
defined by

ad =

e1 e2 e3 u1 u2 u3 u4

e1 0 −e3 e2 0 u4 0 −u2

e2 e3 0 0 0 u1 −u2 0

e3 −e2 0 0 0 0 u4 −u1

u1 0 0 0 0 0 u1 0

u2 −u4 −u1 0 0 0 pe2 + u2 0

u3 0 u2 −u4 −u1 −pe2 − u2 0 pe3 − u4

u4 u2 0 u1 0 0 u4 − pe3 0

with p ∈ R.

Proposition 3.32.1, [Ko01] p.159, states that any solution of the Einstein-Maxwell equation on
(g, h) has the form:

p = 0, B =




0 0 a 0

0 a 0 0

a 0 b 0

0 0 0 a




, Ω = 0, λ = 0.

The determinant |B| = −a4. If a > 0, (g, h, B) defines a Lorentzian homogeneous triple. For
ν : g× g → m on pairs of elements from the basis g = 〈e1, e2, e3, u1, u2, u3, u4〉 we yield

2ν =

e1 e2 e3 u1 u2 u3 u4

e1 0 0 0 0 u4 0 −u2

e2 0 0 0 0 u1 −u2 0

e3 0 0 0 0 0 u4 −u1

u1 0 0 0 0 0 −u1 0

u2 u4 u1 0 0 −2u1 u2 0

u3 0 −u2 u4 −u1 u2 2
(
u3 − bu1

a

)
u4

u4 −u2 0 −u1 0 0 u4 −2u1

.

The reader verifies easily the relations ν(uh, vh) = 0, and ν(uh, vm) = 1
2 [uh, vm] for u, v ∈ g. The

Levi-Civita connection tensor Λ : g → gl(m) is determined on basis elements as

Λ(e1) =




0 0 0 0

0 0 0 −1

0 0 0 0

0 1 0 0




, Λ(e2) =




0 1 0 0

0 0 −1 0

0 0 0 0

0 0 0 0




, Λ(e3) =




0 0 0 −1

0 0 0 0

0 0 0 0

0 0 1 0




,
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Λ(u1) = 0,

Λ(u2) =




0 −1 0 0

0 0 1 0

0 0 0 0

0 0 0 0




, Λ(u3) =




−1 0 − b
a 0

0 0 0 0

0 0 1 0

0 0 0 0




, Λ(u4) =




0 0 0 −1

0 0 0 0

0 0 0 0

0 0 1 0




.

The Riemannian curvature Ro : m × m → gl(m) is defined as Ro(u, v) =
[
Λ(u), Λ(v)

]
gl
−

Λ
(
[u, v]

)
for all u, v ∈ m. To see that Ro = 0, we simply check

[
Λ(u), Λ(v)

]
gl

= Λ
(
[u, v]

)
for all

u, v ∈ m. Since p = 0, the commutator tensor ad|m×m simplifies to

[, ]|m×m u1 u2 u3 u4

u1 0 0 u1 0

u2 0 0 u2 0

u3 −u1 −u2 0 −u4

u4 0 0 u4 0

. Indeed,

[, ]gl Λ(u1) Λ(u2) Λ(u3) Λ(u4)

Λ(u1) 0 0 Λ(u1) 0

Λ(u2) 0 0 Λ(u2) 0

Λ(u3) −Λ(u1) −Λ(u2) 0 −Λ(u4)

Λ(u4) 0 0 Λ(u4) 0

.

3

Example 3.7. We treat the homogeneous pairs with indices 1.12.2, 1.12.8, and 1.41.2 on the
Internet page [Ha06]. Assuming a general ρ-invariant Lorentzian scalar product, we display the
corresponding geometric tensors ν, Λ, Ro, Rico. It turns out, that Rico = 0 ⇒ Ro = 0. 3
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3.2 Four-dimensional Lorentzian Ricci-flat homogeneous triples

The next lemmas summarize the 10 four-dimensional homogeneous pairs (g, h) in [Ko01] that
extend to homogeneous triples (g, h, B) so that

B has index 1 the scalar product B on m is Lorentzian

Ro 6= 0 not Riemannian-flat

Rico = 0 Ricci-flat





(3.4)

In the next chapter, we derive the geometry of these homogeneous triples in a more general
context. We ommit the proofs of the lemmas at this point.

Lemma 3.8. dim h = 1 Let (g, h) be a homogeneous pair with dim h = 1 from [Ko01]. Suppose
(g, h) extends to a homogeneous triple (g, h, B) with properties (3.4). Then, (g, h, B) is of
isomorphy type g = he1 × R oδ R with g = 〈p1, h, q1, r1, z〉, and isotropy h = 〈p1〉. The ρ-
invariant Lorentzian scalar product on m = 〈h, q1, r1, z〉 is

B =




0 0 0 a

0 a 0 0

0 0 b c

a 0 c d




with a, b, c, d ∈ R and a, b > 0. (3.5)

The derivation δ : he1 × R → he1 × R with respect to 〈p1, h, q1, r1〉 is from the following list:

Index 1.41.9 1.41.10 1.41.11 1.41.13

δ




0 0 r 0

0 1 0 0

1 0 1 0

0 0 1 −p







0 0 r 0

0 1 0 0

1 0 1 0

0 0 0 −p







0 0 r 0

0 1 0 −1

1 0 1 0

0 0 1 1







0 0 r 0

0 0 0 0

1 0 0 0

0 0 1 −1




Index 1.41.14 1.41.16 1.41.19

δ




0 0 r 0

0 0 0 0

1 0 0 0

0 0 0 −1







0 0 −1 0

0 0 0 −1

1 0 0 0

0 0 1 0







0 0 −1 0

0 0 0 0

1 0 0 0

0 0 1 0




The parameters are r, p ∈ R with restrictions as indicated by the table below.

Index Rico = 0 ⇒ Ro 6= 0 ⇒
1.41.9 r = −2ap2−2ap−b

2a p 6= −1
2 ∨ −4ap2 − 4ap + b 6= 0

1.41.10 r = −p2 − p p(p + 1) 6= 0

1.41.11 r = − b
2a

1.41.13 r = −2a−b
2a

1.41.14 r = −1
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Lemma 3.9. dim h = 2 Let (g, h) be a homogeneous pair with dim h = 2 from [Ko01]. Suppose
(g, h) extends to a homogeneous triple (g, h, B) with properties (3.4). Then, (g, h, B) is of
isomorphy type g = he2 oδ R with g = 〈p1, p2, h, q1, q2, z〉, and isotropy h = 〈p1, p2〉. The
ρ-invariant Lorentzian scalar product on m = 〈h, q1, q2, z〉 is

B =




0 0 0 a

0 a 0 0

0 0 a 0

a 0 0 b




with a, b ∈ R and a > 0. (3.6)

The derivation δ : he2 → he2 is from the following list:

# 2.52.2 2.52.3 2.52.6

δ




0 2t 0 −4t2 − r + s −t

0 0 0 −t −r − s

0 0 −1 0 0

1 0 0 −1 0

0 1 0 −2t −1







0 1 0 −r − s− 1 0

0 0 0 0 s− r

0 0 0 0 0

1 0 0 0 0

0 1 0 −1 0







0 0 0 0 1

0 0 0 1 0

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0




We state δ with respect to the basis he2 = 〈p1, p2, h, q1, q1〉. The parameters are r, s, t ∈ R with
s, t ≥ 0 and restrictions as indicated by the table below.

Index Rico = 0 ⇒ Ro 6= 0 ⇒
2.52.2 r = −t2 s > 0

2.52.3 r = −1
4 s > 0

¥

B. Komrakov does not explicitly state the domains of the coefficients a, b, c, d ∈ R, for
which B makes a scalar product of index 1. For that reason, we have derived the domains in
Example 1.1. The homogeneous pair with index 2.52.6 is a symmetric pair, which is part of the
classification of solvable pseudo-Riemannian symmetric spaces of index 1 and 2 in [Ne03] p.31.

In accordance with Table 3.1, the previous lemmas 3.8 and 3.9 cover all homogeneous pairs
from [Ko01], that extend to homogeneous triples of the desired geometry (3.4). Suppose Kom-
rakov’s classification is correct. Then, no other 4-dimensional homogeneous triples (g, h, B) with
dim h ≥ 1, properties (3.4), and essentially different Lie algebra structure g exist.

In the following lemmas, we establish important isomorphies. We show that fixing B = L4

is not a restriction.

Lemma 3.10. dim h = 1 Any homogeneous triple (g, h, B) encountered in Lemma 3.8 is iso-
morphic to (ğ, h̆, L4) with ğ = he1 ×R oδ̆ R, h̆ = 〈p1〉, and δ̆ : he1 ×R → he1 ×R is a derivation.

Proof. According to the table of derivations in Lemma 3.8, we may assume δ with respect to
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he1 × R = 〈p1, h, q1, r1〉 is of the form

δ =




0 0 s 0

0 x 0 g

1 0 x 0

0 0 n p




, x, s, n, p, g ∈ R. Then, δ̆ =




0 0 s
a 0

0 x√
a

0 g√
b

1 0 x√
a

0

0 0
√

bn
a

p√
a




,

where a, b > 0 are the coefficients of the Lorentzian scalar product B in (3.5). To see this, denote
with ăd the commutator of ğ = he1 × R oδ̆ R, and ad is the commutator of g. In the spirit of
Remark 1.9, we provide a Lie algebra isomorphism α : ğ → g such that the diagrams

ăd : ğ × ğ → ğ

↓ α ↓ α ↑ α−1

ad : g × g → g

, and

L4 : m̆ × m̆ → R

↓ αm ↓ αm ↑ Id

B : m × m → R

commute. We choose α =


 1 0

0 αm


, where αm is adapted from Example 1.1 as

αm =




1√
a

0 0 c2−bd
2a3/2b

0 1√
a

0 0

0 0 1√
b
− c√

ab

0 0 0 1√
a




with inverse α−1
m =




√
a 0 0 bd−c2

2
√

ab

0
√

a 0 0

0 0
√

b c√
b

0 0 0
√

a




.

The matrix product αT
m.B.αm = L4 proves the right diagram. Next, we show the commuta-

tivity of the left diagram. Fix the basis ğ =
〈
p̆1, h̆, q̆1, r̆1, z̆

〉
. Due to the diagonal shape of α

restricted to the first four columns, the only non-zero commutator relation of ăd on elements of〈
p̆1, h̆, q̆1, r̆1

〉
is

[p̆1, q̆1]ğ = α−1 [αp̆1, αq̆1]g = α−1

[
1p1,

1√
a
q1

]

g

=
1√
a
α−1h =

1√
a

√
ah = h̆.

Hence, the Lie algebra generated by
〈
p̆1, h̆, q̆1, r̆1

〉
is isomorphic to he1 ×R. Concerning evalua-

tions of the commutator ăd involving z̆, we verify that

[z̆, ŭ]ğ = α−1 [αz̆, αŭ]g = α−1

[
c2 − bd

2a3/2b
h− c√

ab
r1 +

1√
a
z, αŭ

]

g

= α−1

[
1√
a
z, αŭ

]

g

=
1√
a
α−1δαŭ = δ̆ŭ

for all ŭ ∈
〈
p̆1, h̆, q̆1, r̆1

〉
. In matrix notation, the last equality 1√

a
α−1δα = δ̆ requires




1√
a

0 0 0

0 1 0 0

0 0 1 0

0 0 0
√

b√
a




.




0 0 s 0

0 x 0 g

1 0 x 0

0 0 1 p




.




1 0 0 0

0 1√
a

0 0

0 0 1√
a

0

0 0 0 1√
b




=




0 0 s
a 0

0 x√
a

0 g√
b

1 0 x√
a

0

0 0
√

b
a

p√
a




,

which we confirm in a straightforward computation.
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Lemma 3.11. dim h = 2 Any homogeneous triple (g, h, B) encountered in Lemma 3.9 is iso-
morphic to (ğ, h̆, L4) with ğ = he2 oδ̆ R, h̆ = 〈p1, p2〉, and δ̆ : he2 → he2 is a derivation.

Proof. The technique of the preceding proof applies here as well. We only state the key
terms. According to the table of derivations in Lemma 3.9, we assume δ with respect to
he2 = 〈p1, p2, h, q1, q2〉 is of the form

δ =




0 n 0 t1 t2

0 0 0 t2 t3

0 0 x 0 0

1 0 0 x 0

0 1 0 −n x




, x, n, ti ∈ R. Then, δ̆ =




0 n√
a

0 t1
a

t2
a

0 0 0 t2
a

t3
a

0 0 x√
a

0 0

1 0 0 x√
a

0

0 1 0 − n√
a

x√
a




,

where a > 0 is the coefficient of the Lorentzian scalar product B in (3.6). We choose the Lie

algebra isomorphism α : ğ → g as α =


 I2 0

0 αm


, where αm is adapted from Example 1.1 as

αm =




1√
a

0 0 − b
2a3/2

0 1√
a

0 0

0 0 1√
a

0

0 0 0 1√
a




with inverse α−1
m =




√
a 0 0 b

2
√

a

0
√

a 0 0

0 0
√

a 0

0 0 0
√

a




.

Let us summarize the efforts of this chapter in a plain

Corollary 3.12. Suppose the classification in [Ko01] is correct. Then, any 4-dimensional
Lorentzian homogeneous triple with isotropy dim h ≥ 1, and curvature Ro 6= 0, Rico = 0 is
isomorphic to

(g, h, L4) with g = hen × Rm oδ R, and h = 〈p1, . . . , pn〉

for either n = 1,m = 1, or n = 2,m = 0.

Proof. The corollary summarizes Lemma 3.10, and 3.11.

The observation motivates us to investigate these types of homogeneous triples for arbitrary
integer values n, m in the next chapter. In particular, for n = 0 we obtain Lorentzian Ricci-flat
Lie groups that are not Riemannian-flat.
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Chapter 4

Lorentzian Ricci-flat homogeneous triples

We introduce a new class of Lorentzian homogeneous triples Hn
m. To the best of our knowledge,

Hn
m includes all Lorentzian homogeneous triples with geometry Ro 6= 0, Rico = 0 that are

mentioned in the literature. In addition, the class covers all homogeneous triples of this particular
geometry we could detect.

A homogeneous triple in Hn
m is denoted by Hn

m(Y, δ), which we define in 4.1. In the following
section, we clarify what was previously known to us. Then, we motivate the design of the triples
in Hn

m. In Section 4.2, we derive the Levi-Civita connection, the Riemannian curvature, and the
Ricci tensor of a triple Hn

m(Y, δ). The geometry depends on the parameters Y, δ. The curvature
Ro = 0, as well as Rico = 0 reduce to non-linear equations in the coefficients of Y, δ. Finally, we
state a (complete) list of automorphisms, which map Hn

m(Y, δ) to Hn
m(Y̆ , δ̆). The mappings are

relevant to classify the triples in Hn
m.

We agree on the following conventions. The basis of the (2+2n+m)-dimensional Lie algebra
g is 〈p1, . . . , pn, h, q1, . . . , qn, r1, . . . , rm, z〉. We partition g into the vector subspaces

p = 〈p1, . . . , pn〉 , h = 〈h〉 , q = 〈q1, . . . , qn〉 , r = 〈r1, . . . , rm〉 , z = 〈z〉 .

The Lie subalgebra is h = p. The Lie algebra decomposes as g = h⊕m, where

m = 〈h, q1, . . . , qn, r1, . . . , rm, z〉 , equivalently m = h⊕ q⊕ r⊕ z.

We define n = p⊕ h⊕ q⊕ r, and m\z = h⊕ q⊕ r.
For u ∈ g, the vector uV is the projection on the vector subspace V ⊂ g. For instance, ur ∈ g

is the projection of u ∈ g on 〈r1, . . . , rm〉. Alternatively, uV is a vector of V . For instance, um\z
is the column vector

um\z =




uh

uq

ur


 .

We state linear mappings with respect to the partition p,h,q, r, z. For instance, the linear
map φ : m\z → p⊕ h with

u 7→

 b C 0

x fT gT


 .u =


 b.uh + C.uq

xuh + fT .uq + gT .ur


 for u ∈ m\z,

is defined by x ∈ R, b, f ∈ Rn, g ∈ Rm, C ∈ Rn×n. 0 denotes an (n×m)-block of zeros.
Let α : g → g be a linear mapping. Then, αn : n → n denotes the restriction of α to vectors

in n with αn.u = α(u) for all u ∈ n. Analogous, αm : m → m.
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Definition 4.1. Hn
m(Y, δ) For integers n,m ≥ 0, let n be the (1 + 2n + m)-dimensional Lie

algebra with basis 〈p1, . . . , pn, h, q1, . . . , qn, r1, . . . , rm〉 and commutator determined by

[un, vn] =




vp

vh

vq

vr




T

.




0 0 −In 0

0 0 0 0

In 0 Z 0

0 0 0 Y




.




up

uh

uq

ur




h for all u, v ∈ n, (4.1)

where Y ∈ Rm×m, and Z ∈ Rn×n are skew symmetric matrices. Then, Hn
m(Y, δ) denotes

the Lorentzian homogeneous triple (g, h, B) with Lie algebra g = n oδ R, and isotropy h =
〈p1, . . . , pn〉. The derivation δ : n → n is

un 7→




0 0 S − xZ/2 −NT .Y

0 x 0 gT

In 0 xIn + Z 0

0 0 N P




.




up

uh

uq

ur




, where





x ∈ R, S ∈ Rn×n symmetric,

g ∈ Rm, N ∈ Rm×n, P ∈ Rm×m,

and xY = P T .Y + Y.P .

(4.2)
The basis element on R is z such that [z, u] = δ.un for all u ∈ g. The scalar product on m is
B = L2+n+m with respect to the basis m = 〈h, q1, . . . , qn, r1, . . . , rm, z〉.

If we omit Y as in Hn
m(δ), we assume Y = 0. 3

4.1 Motivation

We are interested in homogeneous triples (g, h, B) with decomposition g = h ⊕ m that have
special geometric properties:

B has index 1 the scalar product B on m is Lorentzian

Ro 6= 0 not Riemannian-flat

Rico = 0 Ricci-flat





(4.3)

To the best of our knowledge, Definition 4.1 covers all homogeneous triples with geometry (4.3)
that are mentioned in the literature:

• [FM05] discuss the geometry of homogeneous triples of the form Hn
0 (δ). For fixed n, the

set of all such triples is a vector space.

• Any symmetric triple with geometry (4.3) is isomorphic to Hn
0 (δ) for a suitable derivation

δ, [CW70]. We supplement Corollary 4.12 with details.

In addition, the construction covers all homogeneous triples of this particular geometry we could
detect:

• The geometry of triples Hn
m(Y, δ) with m 6= 0 has not been published yet. Due to the

non-linear constraint xY = P T .Y + Y.P , the set of all triples of the form Hn
m(Y, δ) for

fixed n, and m ≥ 2 is not a vector space.
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• For n = 0, we have isotropy of dim h = 0. Then, the corresponding homogeneous space is
a Lie group with left-invariant metric.

• Suppose Komrakov’s list is a complete classification of 4-dimensional homogeneous pairs.
Then, any 4-dimensional homogeneous triple with isotropy dim h ≥ 1 and geometry (4.3)
is isomorphic to H1

1(δ), or H2
0(δ) for a suitable derivation. Corollary 4.3 gives the proof.

To get familiar with the construction, we encourage the reader to have a quick glance at
discussions 5.1, 5.2, 5.4. There, we give an algebraic, as well as geometric description of the
4-dimensional homogeneous triples that originate from Definition 4.1.

In this section, we illuminate the design of the derivation δ : n → n in (4.2). The aspects we
investigate are the ρ-invariance of the scalar product B = L2+n+m, the Jacobi identity of the
commutator, and finding a reductive decomposition.

ρ-invariance of the scalar product

Lets consider a homogeneous triple (g, h, B) that coincides with Hn
m(Y, δ), except the derivation

δ : n → n is any derivation on n. We partition the action of the linear mapping δ restricted to
elements of h as

δ(up) =




A

eT

H

L




.up for all u ∈ h, where A ∈ Rn×n, e ∈ Rn,H ∈ Rn×n, L ∈ Rm×n.

Then, the isotropy representation ρ : h → gl(m) of h on m is determined by the commutator
relations

[up, h] = 0

[up, vq] = (uT
p .vq)h

[up, vr] = 0

[up, z] = −δ(up)





as ρ(up) =




0 uT
p 0 −eT .up

0 0 0 −H.up

0 0 0 −L.up

0 0 0 0




for all up ∈ h.

We express the ρ-invariance of the (0, 2)-tensor B as ρ(up)T .B + B.ρ(up) = 0. Since B =
L2+n+m, the two matrix products

ρ(up)T .B =




0 0 0 0

0 0 0 up

0 0 0 0

0 −uT
p .HT −uT

p .LT −uT
p .e




, and B.ρ(up) =




0 0 0 0

0 0 0 −H.up

0 0 0 −L.up

0 uT
p 0 −eT .up



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reduce the ρ-invariance of B to



0 0 0 0

0 0 0 (In −H).up

0 0 0 −L.up

0 uT
p .(In −HT ) −uT

p .LT −2eT .up




= 0 for all up ∈ Rn.

The equation imposes e, L = 0, and H = In on the derivation δ : n → n.

Jacobi identity

Lets consider a homogeneous triple (g, h, B) that coincides with Hn
m(Y, δ), where Z = 0, and the

linear mapping δ : n → n is given by

un 7→




A b C D

0 x fT gT

In i J K

0 l N P




.




up

uh

uq

ur




for all u ∈ n,

where A, b, C, . . . , P denote matrices and vectors of appropriate format with a priori arbitrary
entries. However, from the previous discussion we know that B = L2+n+m is ρ-invariant.

We want to assure that the commutator of the Lie algebra g satisfies the Jacobi identity.
Equivalently, we find restrictions on A, b, C, . . . , P , that make δ : n → n a derivation. Recall
from the introduction, δ : n → n is a derivation if the linear mapping

ξ : n → gl(n) with ξ(v).u = δ.[u, v]− [δ.u, v]− [u, δ.v]

is the zero mapping for all v ∈ n. In Table 4.2, we derive ξ(v) separately for values vp, vh, vq, vr ∈
n. Due to linearity, it suffices to have ξ(vp) = 0, ξ(vh) = 0, . . . .

• ξ(vp) is the sum of the three matrices below.

δ.[◦, vp] −[δ(◦), vp] −[◦, δ.vp]


0 0 −b.vT
p 0

0 0 −x.vT
p 0

0 0 −i.vT
p 0

0 0 −l.vT
p 0







0 0 0 0

vT
p .In vT

p .i vT
p .J vT

p .K

0 0 0 0

0 0 0 0







0 0 0 0

−vT
p .In 0 vT

p .AT 0

0 0 0 0

0 0 0 0




ξ(vp) = 0 for all v ∈ n requires b, i, l, K = 0, and J = xIn −AT . Henceforth, we assume
δ : n → n is of the form

un 7→




A 0 C D

0 x fT gT

In 0 J 0

0 0 N P




.




up

uh

uq

ur




for all u ∈ n.
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For a better overview, the matrix J has not been substituted by xIn −AT .
• ξ(vh) = 0, since δ.[u, vh] = δ(0) = 0, −[δ.u, vh] = 0, and −[u, δ(vh)] = −[u, xvhh] = 0 for

all u ∈ n.
• ξ(vq) is the sum of the three matrices below.

δ.[◦, vq] −[δ(◦), vq] −[◦, δ.vq]


0 0 0 0

xvT
q 0 0 0

0 0 0 0

0 0 0 0







0 0 0 0

−vT
q .A 0 −vT

q .C −vT
q .D

0 0 0 0

0 0 0 0







0 0 0 0

−vT
q .JT 0 vT

q .CT −vT
q .NT .Y

0 0 0 0

0 0 0 0




ξ(vq) = 0 for all v ∈ n results in the additional relations CT = C, and D = −NT .Y .
• ξ(vr) is the sum of the three matrices below.

δ.[◦, vr] −[δ(◦), vr] −[◦, δ.vr]


0 0 0 0

0 0 0 vT
r .xY

0 0 0 0

0 0 0 0







0 0 0 0

0 0 −vT
r .Y.N −vT

r .Y.P

0 0 0 0

0 0 0 0







0 0 0 0

0 0 vT
r .DT −vT

r .P T .Y

0 0 0 0

0 0 0 0




ξ(vr) = 0 for all v ∈ n requires xY = P T .Y + Y.P .

Reductive decomposition

So far, the discussion has shown that on the Lie algebra n with commutator (4.1), where Z = 0,
a derivation δ : n → n is of the form

un 7→




A C −NT .Y

x fT gT

In xIn −AT

N P




.




up

uh

uq

ur




, where





x ∈ R, A,C ∈ Rn×n,

C symmetric,

g ∈ Rm, N ∈ Rm×n, P ∈ Rm×m,

and xY = P T .Y + Y.P

(4.4)
with 0’s omitted. We define Hn

m(Y, δ) to be the homogeneous triple (n oδ R,p, L2+n+m). The
notion of Hn

m(Y, δ) is used only to state the two following results.
If A 6= 0 the triple Hn

m(Y, δ) is not in a reductive decomposition. We have [h,m] 6⊂ m, since

[up, z]h = −[z, up]h = −δ(up)h = −A.up ∈ h.

However, the next result proves that Hn
m(Y, δ) is isomorphic to Hn

m(Y, δ̆), where δ̆ is an appro-
priate derivation that is in the scope of Definition 4.1. It turns out that the symmetric part of
the matrix A as well as the vector f are redundant by isomorphy.
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Lemma 4.2. Hn
m(Y, δ) is isomorphic to Hn

m(Y, δ̆) where δ̆ : n → n is defined by

un 7→




S − xZ/2 −NT .Y

x gT

In xIn + Z

N P




.




up

uh

uq

ur




, with





Z = A−AT , and

S = C + A.AT − x(A + AT )/2.

Proof. We denote the commutator of Hn
m(Y, δ) by ad, and the commutator of Hn

m(Y, δ̆) by ăd.
In the spirit of Remark 1.9, we show that the diagram

ăd : g × g → g

↓ α ↓ α ↑ α−1

ad : g × g → g

commutes for

α =




In 0 A 0 −f

1 0 0 0

In 0 0

Im 0

1




, and α−1 =




In 0 −A 0 f

1 0 0 0

In 0 0

Im 0

1




.

Equivalently, we prove [u, v]ăd = α−1[α.u, α.v] for all u, v ∈ g, where the commutator [·, ·]
without subindex denotes the action of ad. By linearity, the equation decomposes into

[un, vn]ăd = α−1[αn.un, αn.vn] (4.5)

[z, un]ăd = α−1[α(z), αn.un] (4.6)

for all u, v ∈ g.
The commutator in (4.5) reduces to matrix multiplication. We confirm

α−1[αn.un, αn.vn]

=
(
vT
n .αT

n .




0 −In

0

In 0

Y




.




In A

1

In

Im




.un

)
α(h)

=
(
vT
n .




In

1

AT In

Im




.




0 −In

0

In A

Y




.un

)
h =

(
vT
n .




0 −In

0

In A−AT

Y




.un

)
h.



40

The commutator in (4.6) is slightly more complicated. We have

α−1 [αz, αun] = α−1







−f

0

0

0

1




, αn.un




= α−1 [z, αn.un] + α−1







−f

0

0

0

0




, αn.un




.

The first summand is

α−1 [z, αn.un] = α−1
n .δ.αn.un

= α−1
n .




A C −NT .Y

x fT gT

In xIn −AT

N P




.




In A

1

In

Im




.un

=




In −A

1

In

Im




.




A C + A.A −NT .Y

x fT gT

In xIn + A−AT

N P




.un

=




C + A.AT − xA −NT .Y

x fT gT

In xIn + A−AT

N P




.un =




S − xZ/2 −NT .Y

x fT gT

In xIn + Z

N P




.un.

The second summand simplifies to

. . . = α−1




αn.un,




−f

0

0

0

0







=
(




−f

0

0

0




T

.




0 −In

0

In Z

Y




.αn.un

)
h

=
(




0

0

−f

0




T

.




In A

1

In

Im




.un

)
h =




0 0

0 −fT 0

0 0

0 0




.un.

The sum of both matrix expressions confirms [z, un]ăd = α−1[α(z), αn.un] = δ̆.un for all u ∈ g.

The next result is a mere application of the previous lemma.

Corollary 4.3. Suppose the classification in [Ko01] is correct. Then, any 4-dimensional Lorentzian
homogeneous triple with isotropy dim h ≥ 1, and curvature Ro 6= 0, Rico = 0 is isomorphic to
H1

1(δ), or H2
0(δ).
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Proof. According to Lemma 3.10, any such homogeneous triple with 1-dimensional isotropy is
isomorphic to (g1, h1, L4) with g1 = he1×Roδ1R, h1 = 〈p1〉. According to Lemma 3.11, any such
triple with 2-dimensional isotropy is isomorphic to (g2, h2, L4) with g2 = he2oδ2 R, h2 = 〈p1, p2〉.
The lemmas state the derivations as

δ1 =




0 0 s 0

0 x 0 g

1 0 x 0

0 0 n p




, and δ2 =




0 n 0 t1 t2

0 0 0 t2 t3

0 0 x 0 0

1 0 0 x 0

0 1 0 −n x




with coefficients in R.

The derivation δ1 is in the scope of Definition 4.1. The triple (g1, h1, L4) coincides with H1
1(δ1),

whereas (g2, h2, L4) coincides with H2
0(δ2). However, according to the previous lemma, H2

0(δ2)
is isomorphic to H2

0(δ̆2) for an appropriate derivation δ̆2.
As a result of Section 3.1, no effective 4-dimensional Lorentzian homogeneous triple (g, h, B)

with isotropy dim h > 2, and geometry Ro 6= 0, Rico = 0 exist.

4.2 Geometry

In this section, we derive the geometry of the homogeneous triple Hn
m(Y, δ). The associated

geometric tensors ν,Λ, Ro,Rico depend on the coefficients of Y, δ.

Lemma 4.4. The homogeneous triple Hn
m(Y, δ) determines the tensor ν : g× g → m as

ν(un, vn) =




vp

vh

vq

vr




T

.




0 0 In/2 0

0 0 0 0

In/2 0 xIn NT /2

0 0 N/2 (P + P T )/2




.




up

uh

uq

ur




h

ν(u, z) =




0 x/2 0 gT /2 0

−In/2 0 −xIn/2 −NT /2 0

0 0 0 −(Y + P T )/2 −g

0 0 0 0 −x




.




up

uh

uq

ur

uz




for all u, v ∈ g.

Proof. Recall, ν is defined implicitly by 2B
(
ν(u, v), wm

)
= B

(
um, [w, v]m

)
+ B

(
[w, u]m, vm

)
for

all u, v, w ∈ g. We compute ν(un, vn) in Table 4.3, while ν(u, z) follows from Table 4.4. By
symmetry and linearity, both evaluations determine ν : g× g → m.

Definition 4.5. We define P : Rn+m → gl(m) and Q : R× Rn+m × R(n+m)×(n+m) → gl(m) as

P(f) =




0 fT 0

0 0 −f

0 0 0


 , and Q(x, g, X) =




x gT 0

0 X −g

0 0 −x


 .
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Lemma 4.6. The homogeneous triple Hn
m(Y, δ) determines the Levi-Civita connection Λ : g →

gl(m) as

Λ(un) = P





 In 0 xIn + Z/2 NT /2

0 0 N/2 (P + P T + Y )/2


 .




up

uh

uq

ur







Λ(z) = Q

x,


 0

g


 ,


 Z/2 −NT /2

N/2 (P − Y − P T )/2





 =




x 0 gT 0

0 Z/2 −NT /2 0

0 N/2 (P − Y − PT )/2 −g

0 0 0 −x




for all u ∈ g.

Proof. The formula for the Levi-Civita connection is Λ(u).vm = 1
2 [u, v]m +ν(u, v) for all u, v ∈ g.

The previous lemma provides the values for ν(u, v). We yield Λ in a straightforward computation
carried out in Table 4.5.

Remark 4.7. Let x ∈ R, f, g ∈ Rn+m, and X ∈ R(n+m)×(n+m) skew symmetric. We have

[P(f),P(g)
]
gl

= 0 (4.7)
[P(f),Q(x, g, X)

]
gl

= −P(
(xIn+m + X).f

)
. (4.8)

[P(f),P(g)
]
gl

= 0 is a consequence of (1.16). The second commutator computes as

P(f).Q(x, g,X) = Q(x, g, X).P(f) =
[P(f),Q(x, g, X)

]
gl

=


0 fT .X −fT .g

0 0 xf

0 0 0







0 xfT −gT .f

0 0 −X.f

0 0 0







0 −fT .(xIn+m + XT ) 0

0 0 (xIn+m + X).f

0 0 0




3

Lemma 4.8. The non-zero evaluations of the Riemannian curvature tensor Ro : m×m → gl(m)
induced by the homogeneous triple Hn

m(Y, δ) are determined by

Ro(u, z) =
1
4
P





 Cq,q Cq,r

Cr,q Cr,r


 .


 uq

ur





 for all u ∈ m, (4.9)

where

Cq,q = 4S + 3NT .N + Z.Z

Cr,r = 2(P + P T ).(P − xIm) + (Y + P T − P ).(Y + P + P T )− 2P T .Y −N.NT

Cq,r = NT .(3P + P T − 3Y )− (2xIn + Z).NT

Cr,q = CT
q,r = (3P T + P + 3Y ).N −N.(2xIn − Z).
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Proof. The Riemannian curvature tensor satisfies

Ro(u, v) =
[
Λ(u),Λ(v)

]
gl
− Λ

(
[u, v]

)
for all u, v ∈ m.

• Ro(um\z, vm\z) vanishes for vectors u, v ∈ m\z. According to Lemma 4.6, Λ(um\z) = P(fu),
and Λ(vm\z) = P(fv) for appropriate fu, fv ∈ Rn+m. But then

[
Λ(um\z), Λ(vm\z)

]
gl

= 0 by the
previous remark. Furthermore, [um\z, vm\z] ∈ 〈h〉 so that Λ

(
[um\z, vm\z]

)
= 0.

• Table 4.6 yields Ro(um\z, z) as

Ro(um\z, z) =
1
4
P


(−A1 + A2

)
.


 uq

ur





 for all u ∈ m.

Up to the factor 4, the matrix −A1 is the contribution of
[
Λ(um\z), Λ(z)

]
gl

, and A2 is the
contribution of −Λ

(
[um\z, z]

)
. Table 4.7 simplifies the sum −A1 + A2 and partitions the matrix

as in (4.9).
• Skew symmetry of the Riemannian curvature tensor gives Ro(z, z) = −Ro(z, z) = 0.

Lemma 4.9. The non-zero evaluations of the Ricci tensor Rico : m × m → R induced by the
homogeneous triple Hn

m(Y, δ) are determined by

Rico(z, z) = −1
4

tr
(
4S + 3NT .N + Z.Z

)− 1
4

tr
(
2(P + P T ).(P − xIm) + Y.Y −N.NT

)
(4.10)

Proof. The Ricci tensor satisfies Rico(u, v) = tr (w 7→ Ro(w, u).v) for all u, v ∈ m.
First, we obtain Rico(um\z, v) = 0 for all u, v ∈ m.

Rico(um\z, v) = tr
(
w 7→ Ro(w, um\z).v

)
= tr

(
w 7→ Ro(wz, um\z).v

)

= tr


w 7→ −wz

4
P





 Cq,q Cq,r

Cr,q Cr,r


 .


 uq

ur





 .v




= −1
4
zT .P





 Cq,q Cq,r

Cr,q Cr,r


 .


 uq

ur





 .v = 0

By symmetry, Rico(u, vm\z) = 0 for all u, v ∈ m.
What remains is the computation of

Rico(z, z) = tr
(
w 7→ Ro(w, z).z

)

=tr


w 7→ 1

4
P





 Cq,q Cq,r

Cr,q Cr,r


 .


 wq

wr





 .z




=tr


w 7→ −1

4


 Cq,q Cq,r

Cr,q Cr,r


 .


 wq

wr







=− 1
4

trCq,q − 1
4

trCr,r

The terms trCq,q and trCr,r are derived in Table 4.8 and match those in (4.10).
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Remark 4.10. According to [KN69] p.204, the holonomy algebra of a homogeneous triple is
given by

c + [Λ(g), c]gl + [Λ(g), [Λ(g), c]]gl + . . . (4.11)

where c = {Ro(u, v) : u, v ∈ m} is the set of all curvature endomorphisms.
The holonomy of Hn

m(Y, δ) is abelian. To see this, we recall the results on the Levi-Civita
connection and the Riemannian curvature. Due to the commutator relations (4.7), (4.8), all
summands in (4.11) are subsets of {P(f) : f ∈ Rn+m}. We have [P(f),P(g)]gl = 0 for all
f, g ∈ Rn+m. 3

Special instances

Previously, we have derived the geometry of the homogeneous triple Hn
m(Y, δ). Thus, we easily

obtain two corollaries that specialize on the geometry of triples of the formH0
m(Y, δ), and Hn

0 (δ).
A homogeneous triple H0

m(Y, δ) corresponds to a Lie algebra with Lorentzian scalar product.
The set of all such triples is not a vector space due to the non-linear relation xY = P T .Y +Y.P .

Corollary 4.11. H0
m(Y, δ) Let n be the (1+m)-dimensional Lie algebra with basis 〈h, r1, . . . , rm〉

and commutator determined by

[un, vn] =


 vh

vr




T

.


 0 0

0 Y


 .


 uh

ur


 h for all u, v ∈ n,

where Y ∈ Rm×m is a skew symmetric matrix. The homogeneous triple
(
g, {0}, B)

with Lie
algebra g = n oδ R, isotropy {0}, scalar product B = L2+m with respect to 〈h, r1, . . . , rm, z〉,
and derivation δ : n → n as

un 7→

 x gT

0 P


 .


 uh

ur


 , where





x ∈ R, g ∈ Rm, P ∈ Rm×m

such that xY = P T .Y + Y.P

coincides withH0
m(Y, δ). For such a triple, the non-zero evaluations of the Riemannian curvature

tensor Ro : g× g → gl(g) and the Ricci tensor Rico : g× g → R are determined by

Ro(u, z) = +
1
4
P ((

2(P + P T ).(P − xIm) + (Y + P T − P ).(Y + P + P T )− 2P T .Y
)
.ur

)

Rico(z, z) = −1
4

tr
(
2(P + P T ).(P − xIm) + Y.Y

)

for all u ∈ g. 3

The following corollary specializes on the geometry of the homogeneous triple Hn
0 (δ). To

the best of our knowledge, any homogeneous triple published with geometry (4.3) prior to our
thesis is of type Hn

0 (δ). For a complete discussion see [FM05], who also state the left-action on
the corresponding homogeneous space.



45

Corollary 4.12. Hn
0 (δ) Let n be the (1 + 2n)-dimensional Lie algebra with basis 〈p1, . . . , pn,

h, q1, . . . , qn〉 and commutator determined by

[un, vn] =




vp

vh

vq




T

.




0 0 −In

0 0 0

In 0 Z


 .




up

uh

uq


h for all u, v ∈ n,

where Z ∈ Rn×n is a skew symmetric matrix. The homogeneous triple (g, h, B) with Lie
algebra g = n oδ R, isotropy h = 〈p1, . . . , pn〉, scalar product B = L2+n with respect to
m = 〈h, q1, . . . , qn, z〉, and derivation δ : n → n as

un 7→




0 0 S − xZ/2

0 x 0

In 0 xIn + Z


 .




up

uh

uq


 , where x ∈ R, and S ∈ Rn×n symmetric

coincides with Hn
0 (δ). For such a triple, the non-zero evaluations of the Riemannian curvature

tensor Ro : m×m → gl(m) and the Ricci tensor Rico : m×m → R are determined by

Ro(u, z) = +P ((
S + Z2/4

)
.uq

)
, and Rico(z, z) = − tr

(
S + Z2/4

)
for all u ∈ m.

3

In case x,Z = 0, the triple Hn
0 (δ) is moreover symmetric. According to [CW70], any sym-

metric triple with geometry (4.3) is of this form. We have

Ro = 0 ⇔ S = 0, and Rico = 0 ⇔ trS = 0,

which is also well known from [Ne02].

4.3 Isomorphy

For integers n,m ≥ 0, we denote with Hn
m the set of all homogeneous triples Hn

m(Y, δ) that are
in the scope of Definition 4.1. Isomorphy of homogeneous triples is an equivalence relation. A
moduli space such as

Mn
m := Hn

m

/
isomorphy

typically has complicated topology. However, the next lemma is an important utility to classify
the triples in Hn

m.

Lemma 4.13. Consider the definitions in Table 4.1. The linear mappings

Th(λ), Tq(Q), T r(R), T z(η) : g → g for parameters λ ∈ R∗, Q ∈ O(Rn), R ∈ O(Rm), η ∈ Rm

are isomorphisms between the homogeneous triples Hn
m(Y, δ) and Hn

m(Y̆ , δ̆).
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Table 4.1 : We define the linear mappings Th(λ), Tq(Q), T r(R), T z(η) : g → g. Lemma 4.13
proves that the triples Hn

m(Y, δ) and Hn
m(Y̆ , δ̆) are isomorphic.

α δ̆
Y̆

Z̆

Id : g → g δ =




S − xZ/2 −NT .Y

x gT

In xIn + Z

N P




Y

Z

Th : R∗ → GL(g), λ 7→


λIn

λ

In

Im

1/λ







(S − xZ/2)/λ2 −NT .Y/λ2

x/λ gT /λ2

In (xIn + Z)/λ

N/λ P/λ




Y/λ

Z/λ

Tq : O(Rn) → GL(g), Q 7→


Q

1

Q

Im

1







QT .(S − xZ/2).Q −QT .NT .Y

x gT

In xIn + QT .Z.Q

N.Q P




Y

QT .Z.Q

T r : O(Rm) → GL(g), R 7→


In

1

In

R

1







S − xZ/2 −NT .Y.R

x gT .R

In xIn + Z

RT .N RT .P.R




RT .Y.R

Z

T z : Rm → GL(g), η 7→


In NT .η

1 ηT −ηT .η/2

In

Im −η

1







S − xZ/2 −NT .Y

x gT + ηT .(xIm + Y − P )

In xIn + Z

N P




Y

Z
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Proof. Denote with ad, and ăd the commutators of Hn
m(Y, δ), and Hn

m(Y̆ , δ̆) respectively. In the
spirit of Remark 1.9, we show that both diagrams commute

ăd : g × g → g

↓ α ↓ α ↑ α−1

ad : g × g → g

, and

L2+n+m : m × m → R

↓ αm ↓ αm ↑ Id

L2+n+m : m × m → R

for α = Th(λ), Tq(Q), T r(R), T z(η), and all parameters λ ∈ R∗, Q ∈ O(Rn), R ∈ O(Rm),
η ∈ Rm.

• First, consider α = T z(η) with η ∈ Rm. The linear mapping is defined in Table 4.1 as

α =




In NT .η

1 ηT −ηT .η/2

In

Im −η

1




, and α−1 =




In −NT .η

1 −ηT −ηT .η/2

In

Im η

1




.

We have to show [u, v]ăd = α−1[α.u, α.v] for all u, v ∈ g, where plain [·, ·] denotes the commutator
with respect to ad. By linearity, the equation decomposes into

[un, vn]ăd = α−1[αn.un, αn.vn] (4.12)

[z, un]ăd = α−1[α(z), αn.un] (4.13)

for all u, v ∈ g. The commutator in (4.12) reduces to matrix multiplication,

α−1[αn.un, αn.vn] = . . .

=
(
vT
n .αT

n .




0 −In

0

In Z

Y




.




In

1 ηT

In

Im




.un

)
α(h)

=
(
vT
n .




In

1

In

η Im




.




0 −In

0

In Z

Y




.un

)
h =

(
vT
n .




0 −In

0

In Z

Y




.un

)
h.

The commutator in (4.13) is slightly more complicated. We have

α−1 [αz, αun] = α−1







NT .η

−ηT .η/2

0

−η

1




, αn.un




= α−1 [z, αn.un] + α−1







NT .η

−ηT .η/2

0

−η

0




, αn.un




.
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The first summand α−1 [z, αn.un] is

. . . = α−1
n .δ.αn.un

= α−1
n .




S − xZ/2 −NT .Y

x gT

In xIn + Z

N P




.




In

1 ηT

In

Im




.un

=




In

1 −ηT

In

Im




.




S − xZ/2 −NT .Y

x gT + xηT

In xIn + Z

N P




.un

=




S − xZ/2 −NT .Y

x −ηT .N gT + xηT − ηT .P

In xIn + Z

N P




.un,

whereas the second summand simplifies to

. . . = α−1




αn.un,




−NT .η

ηT .η/2

0

η

0







=
(




−NT .η

ηT .η/2

0

η




T

.




0 −In

0

In Z

Y




.αn.un

)
h

=
(




0

0

NT .η

Y T .η




T

.




In

1 ηT

In

Im




.un

)
h =




0

0 ηT .N ηT .Y

0

0




.un.

The results confirm [z, un]ăd = α−1[α(z), αn.un] = δ̆.un for all u ∈ g.

• For α = Th(λ), Tq(Q), T r(R) we suspend similar transformations to Table 4.9, and Table
4.10. However, the computations are carried out in detail.

The right diagram is a consequence of Remark 1.2.

4.4 Auxiliary calculations
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Table 4.2 : We yield the linear mapping ξ : n → gl(n) defined by ξ(v).u = δ.[u, v]−[δ.u, v]−[u, δ.v]
for v ∈ p,q, r respectively.

• δ.[u, vp] = δ. [uq, vp] = δ.
(−(vT

p .uq)h
)

= −




b

x

i

l




(vT
p .uq) = −




b.vT
p

x.vT
p

i.vT
p

l.vT
p




.uq

−[δ.u, vp] = −







A b C D

0 x fT gT

In i J K

0 l N P




.




up

uh

uq

ur




, vp




=
(
vT
p .

(
In i J K

)
.




up

uh

uq

ur




)
h

−[u, δ(vp)] = −







up

uh

uq

ur




,




A.vp

0

In.vp

0







= −(
vT
p .In.up − vT

p .AT .uq

)
h

• δ.[u, vq] = δ. [up, vq] = δ.
(
(vT

q .up)h
)

= x
(
vT
q .up

)
h

−[δ.u, vq] = −







A 0 C D

0 x fT gT

In 0 J 0

0 0 N P




.




up

uh

uq

ur




, vq




= −(
vT
q .

(
A 0 C D

)
.




up

uh

uq

ur




)
h

−[u, δ(vq)] = −







up

uh

uq

ur




,




C.vq

fT .vq

J.vq

N.vq







= − (
vT
q .JT .up − vT

q .CT .uq + vT
q .NT .Y.ur

)
h

• δ.[u, vr] = δ. [ur, vr] = δ.
(
(vT

r .Y.ur)h
)

=
(
vT
r .xY.ur

)
h

−[δ.u, vr] = −







A 0 C D

0 x fT gT

In 0 J 0

0 0 N P




.




up

uh

uq

ur




, vr




= −(
vT
r .Y.

(
0 0 N P

)
.




up

uh

uq

ur




)
h

−[u, δ(vr)] = −







up

uh

uq

ur




,




D.vq

gT .vq

0.vq

P.vq







= −(− vT
q .DT .uq + vT

q .P T .Y.ur

)
h
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Table 4.3 : First, we write out the commutator [w, un]m. Then, we obtain ν(un, vn) via the
relation 2B

(
ν(u, v), wm

)
= B

(
um, [w, v]m

)
+ B

(
[w, u]m, vm

)
for all u, v, w ∈ g.

[w, un]m =[wn, un]m + wz(δ.un)m

=




up

uh

uq

ur




T

.




0 −In

0

In Z

Y




.




wp

wh

wq

wr




h + wz




x g

In xIn + Z

N P

0 0 0 0




.




up

uh

uq

ur




=




uT
q 0 uT

q .Z − uT
p uT

r .Y xuh + uT
r .g

0 0 0 0 up + (xIn + Z).uq

0 0 0 0 N.uq + P.ur

0 0 0 0 0




.




wp

wh

wq

wr

wz




2B
(
ν(un, vn), wm

)
=B

(
(un)m, [wm, vn]m

)
+ B

(
[wm, un]m, (vn)m

)

= +




uh

uq

ur

0




T

.Ln+m.




0 vT
q .Z − vT

p vT
r .Y xvh + gT .vr

0 0 0 vp + (xIn + Z).vq

0 0 0 N.vq + P.vr

0 0 0 0




.




wh

wq

wr

wz




+




vh

vq

vr

0




T

.Ln+m.




0 uT
q .Z − uT

p uT
r .Y xuh + gT .ur

0 0 0 up + (xIn + Z).uq

0 0 0 N.uq + P.ur

0 0 0 0




.




wh

wq

wr

wz




= +




uh

uq

ur

0




T

.




0 0 0 0

0 0 0 vp + (xIn + Z).vq

0 0 0 N.vq + P.vr

0 0 0 0




.




wh

wq

wr

wz




+




vh

vq

vr

0




T

.




0 0 0 0

0 0 0 up + (xIn + Z).uq

0 0 0 N.uq + P.ur

0 0 0 0




.




wh

wq

wr

wz




B
(
ν(un, vn), wm

)
=




vp

vh

vq

vr




T

.




0 0 In/2 0

0 0 0 0

In/2 0 xIn NT /2

0 0 N/2 (P + PT )/2




.




up

uh

uq

ur




wz
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Table 4.4 : First, we write out the commutator [w, z]m. Then, we obtain ν(u, z) via the relation
2B

(
ν(u, z), wm

)
= B(um, [w, z]m) + B(z, [w, u]m) for all u,w ∈ g.

[w, z]m =− [z, w]m = −(δ.wn)m = −




0 x 0 gT 0

In 0 x + Z 0 0

0 0 N P 0

0 0 0 0 0




.




wp

wh

wq

wr

wz




2B
(
ν(u, z), wm

)
=B(um, [w, z]m) + B(z, [w, u]m)

=B(um, [w, z]m) + uzB(z, [w, z]m) + B(z, [w, un]m)

=B(um + uz, [w, z]m) + B(z, [w, un]m)

=B(um + uz, [w, z]m) + B(z, [w, un]h)

=[w, un]h + B(um + uz, [w, z]m)

= +
(

uT
q 0 uT

q .Z − uT
p uT

r .Y xuh + uT
r .g

)
.w

−




uh

uq

ur

2uz




T

.Ln+m.




0 x 0 gT 0

In 0 xIn + Z 0 0

0 0 N P 0

0 0 0 0 0




.w

=




up

uh

uq

ur

uz




T

.







0 0 −In 0 0

0 0 0 0 x

In 0 Z 0 0

0 0 0 Y g

0 0 0 0 0




−




0 0 0 0 0

0 0 0 0 0

In 0 xIn + Z 0 0

0 0 N P 0

0 2x 0 2gT 0







.w

ν(u, z)T .B.wm =
1
2




up

uh

uq

ur

uz




T

.




0 −In 0 0

0 0 0 x

0 −xIn 0 0

0 −N Y − P g

−2x 0 −2gT 0




.wm

ν(u, z) =
1
2
Ln+m+2.




0 0 0 0 −2x

−In 0 −xIn −N 0

0 0 0 Y − P −2g

0 x 0 gT 0




.




up

uh

uq

ur

uz



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Table 4.5 : We derive the Levi-Civita connection Λ : g → gl(m). It turns out, that Λ(h) = 0.
The identities below hold for all u, v ∈ g.

Λ(un).(vn)m =
1
2
[un, (vn)m]m + ν(un, (vn)m)

= +




0

vh

vq

vr




T

.




0 −In/2

0

In/2 Z/2

Y/2




.




up

uh

uq

ur




h

+




0

vh

vq

vr




T

.




0 0 In/2 0

0 0 0 0

In/2 0 xIn NT /2

0 0 N/2 (P + P T )/2




.




up

uh

uq

ur




h

=




vh

vq

vr

vz




T

.




0 0 0 0

In 0 xIn + Z/2 NT /2

0 0 N/2 (P + P T + Y )/2

0 0 0 0




.




up

uh

uq

ur




h

Due to the Λ(u)-invariance of B = Ln+m+2 for all u ∈ g, we obtain

B((vn)m,Λ(un).z) =−B(z,Λ(un).(vn)m) = −(Λ(un).(vn)m)h

(vn)T
m.B.Λ(un).z =− Λ(un).(vn)m

Λ(un).z =−




0 0 0 0

In 0 xIn + Z/2 NT /2

0 0 N/2 (P + P T + Y )/2

0 0 0 0




.




up

uh

uq

ur




It remains to derive the linear mapping Λ(z):

Λ(z).vm =
1
2
[z, vm]m + ν(z, vm) =

1
2
(δ.(vm)n)m + ν(vm, z)

=
(




x/2 0 gT /2 0

0 xIn/2 + Z/2 0 0

0 N/2 P/2 0

0 0 0 0




+




x/2 0 gT /2 0

0 −xIn/2 −NT /2 0

0 0 −(Y + P T )/2 −g

0 0 0 −x




)
.vm
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Table 4.6 : We yield the essential evaluation of the Riemannian curvature Ro(um\z, z) for all
u ∈ m. First, we specialize the expressions of the Levi-Civita connection to

Λ(um\z) = P




 xIn + Z/2 NT /2

N/2 (P + P T + Y )/2


 .


 uq

ur







Λ(z) = Q

x,


 0

g


 ,


 Z/2 −NT /2

N/2 (P − Y − P T )/2





 .

This allows us to write

Ro(um\z, z) =

=
[
Λ(um\z),Λ(z)

]
gl
− Λ

(
[um\z, z]

)

=
[
Λ(um\z),Λ(z)

]
gl

+ Λ.δ(um\z)

=− P
((

xIn + Z/2 −NT /2

N/2 xIm + (P − Y − PT )/2

)
.

(
xIn + Z/2 NT /2

N/2 (P + PT + Y )/2

)
.

(
uq

ur

))

+ P




(
In 0 xIn + Z/2 NT /2

0 0 N/2 (P + PT + Y )/2

)
.




0 S − xZ/2 −NT .Y

x 0 gT

0 xIn + Z 0

0 N P




.




uh

uq

ur







.

The matrix products in the previous sum expand to

A1 := 4

(
xIn + Z/2 −NT /2

N/2 xIm + (P − Y − PT )/2

)
.

(
xIn + Z/2 NT /2

N/2 (P + PT + Y )/2

)

=

(
4(xIn + Z/2)2 −NT .N 2(xIn + Z/2)NT −NT (P + PT + Y )

2N(xIn + Z/2) + 2(xIm + (P − Y − PT )/2).N Tr,r

)
,

where Tr,r = N.NT + 2(xIm + (P − Y − P T )/2)(P + P T + Y ), and

A2 := 4

(
In 0 xIn + Z/2 NT /2

0 0 N/2 (P + PT + Y )/2

)
.




S − xZ/2 −NT .Y

0 gT

xIn + Z 0

N P




=

(
4S − 2xZ + 4(xIn + Z/2).(xIn + Z) + 2NT .N −4NT .Y + 2NT .P

2N.(xIn + Z) + 2(P + PT + Y ).N 2(P + PT + Y ).P

)
.

Then, the expression we are looking for is

Ro(um\z, z) =
1
4
P


(−A1 + A2

)
.


 uq

ur





 .
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Table 4.7 : We have defined the matrices A1 and A2 in Table 4.6. A1 and A2 determine the
Riemannian curvature tensor. Below, we simplify each of the four components in the expression
−A1 + A2 with respect to the decomposition

−A1 + A2 =


 Cq,q Cq,r

Cr,q Cr,r


 .

Combining the components of A1 and A2 by pairs, we obtain

Cq,q =− 4(xIn + Z/2)2 + NT .N + 4S − 2xZ + 4(xIn + Z/2).(xIn + Z) + 2NT .N

=4S + 3NT .N + 4(xIn + Z/2)(xIn + Z − xIn − Z/2)− 2xZ

=4S + 3NT .N + 2(xIn + Z/2)Z − 2xZ

=4S + 3NT .N + Z.Z

Cq,r =− 2(xIn + Z/2)NT + NT (P + P T + Y )− 4NT .Y + 2NT .P

=− 2(xIn + Z/2)NT + NT (P + P T + Y − 4Y + 2P )

=NT .(3P + P T − 3Y )− (2xIn + Z).NT

Cr,r =−N.NT − 2(xIm + (P − Y − P T )/2).(P + P T + Y ) + 2(P + P T + Y ).P

=− (2xIm + P − Y − P T ).(Y + P + P T ) + 2(Y + P + P T ).P −N.NT

=− 2xY − 2x(P + P T )− (P − Y − P T ).(Y + P + P T ) + 2(Y + P + P T ).P −N.NT

=− 2P T .Y − 2Y.P − 2x(P + P T ) + 2Y.P + 2(P + P T ).P

− (P − Y − P T ).(Y + P + P T )−N.NT

=2(P + P T ).(P − xIm) + (Y + P T − P ).(Y + P + P T )− 2P T .Y −N.NT

Cr,q =CT
q,r = (3P T + P + 3Y ).N −N.(2xIn − Z)

Table 4.8 : Recall, the trace of the product of a symmetric and a skew symmetric matrix is zero.
Keeping this in mind, we simplify the expressions that determine the Ricci curvature.

trCq,q =tr
(
4S + 3NT .N + Z2

)

trCr,r =tr
(
2(P + P T ).(P − xIm) + (Y + P T − P ).(Y + P + P T )− 2P T .Y −N.NT

)

=tr
(
2(P + P T ).(P − xIm) + (Y + P T − P ).Y − 2P T .Y −N.NT

)

=tr
(
2(P + P T ).(P − xIm) + Y.Y − (P T + P ).Y −N.NT

)

=tr
(
2(P + P T ).(P − xIm) + Y.Y −N.NT

)
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Table 4.9 : Denote with X, X̆ the matrices defined by [un, vn]ad =
(
vT
n .X.un

)
h, and [un, vn]ăd =(

vT
n .X̆.un

)
h respectively. We observe that the relation [un, vn]ăd = α−1 [αn.un, αn.vn] for all

u, v ∈ g reduces to the equation
(
αT

n .X.αn

)
α−1(h) = X̆h.

Let α = Th(λ) and λ ∈ R∗. We confirm

αT
n .X.αn/λ = αT

n .




0 −In

0

In Z

Y




.




λIn

λ

In

Im




/λ

=




λIn

λ

In

Im




.




0 −In/λ

0

In Z/λ

Y/λ




=




0 −In

0

In Z/λ

Y/λ




= X̆.

Let α = Tq(Q) and Q ∈ O(Rn). We confirm

αT
n .X.αn = αT

n .




0 −In

0

In Z

Y




.




Q

1

Q

Im




=




QT

1

QT

Im




.




0 −Q

0

Q Z.Q

Y




=




0 −In

0

In QT .Z.Q

Y




= X̆.

Let α = T r(R) and R ∈ O(Rm). We confirm

αT
n .X.αn = αT

n .




0 −In

0

In Z

Y




.




In

1

In

R




=




In

1

In

RT




.




0 −In

0

In Z

Y.R




=




0 −In

0

In Z

RT .Y.R




= X̆.
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Table 4.10 : Finally, we confirm that [z, un]ăd = α−1 [αz, αun] for all u ∈ g. In all instances
α = T z(λ), Tq(Q), T r(R), this relation is equivalent to a simple matrix equation.

Let α = Th(λ) and λ ∈ R∗. Then, [z, un]ăd = α−1 [αz, αun] reduces to α−1
n .δ.αn/λ = δ̆, which

we verify as:



In/λ

1/λ

In

Im




.




S − xZ/2 −NT .Y

x gT

In xIn + Z

N P




.




λIn

λ

In

Im




/λ

= α−1
n .




(S − xZ/2)/λ −NT .Y/λ

x gT /λ

In (xIn + Z)/λ

N/λ P/λ




=




(S − xZ/2)/λ2 −NT .Y/λ2

x/λ gT /λ2

In (xIn + Z)/λ

N/λ P/λ




Let α = Tq(Q) and Q ∈ O(Rn). Then, [z, un]ăd = α−1 [αz, αun] reduces to α−1
n .δ.αn = δ̆, which

we verify as:



QT

1

QT

Im




.




S − xZ/2 −NT .Y

x gT

In xIn + Z

N P




.




Q

1

Q

Im




= α−1
n .




(S − xZ/2).Q −NT .Y

x gT

Q (xIn + Z).Q

N.Q P




=




QT .(S − xZ/2).Q −QT .NT .Y

x gT

In QT .(xIn + Z).Q

N.Q P




Let α = T r(R) and R ∈ O(Rm). Then, [z, un]ăd = α−1 [αz, αun] reduces to α−1
n .δ.αn = δ̆,

which we verify as:



In

1

In

RT




.




S − xZ/2 −NT .Y

x gT

In xIn + Z

N P




.




In

1

In

R




= α−1
n .




S − xZ/2 −NT .Y.R

x gT .R

In xIn + Z

N P.R




=




S − xZ/2 −NT .Y.R

x gT .R

In xIn + Z

RT .N RT .P.R



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Chapter 5

Applications

We benefit from the work carried out in the previous chapter. First, we investigate the geometry
of all 4-dimensional homogeneous triples Hn

m that are in the scope of Definition 4.1. According
to dimm = 2 + n + m = 4, this concerns the triples in H0

2,H1
1, and H2

0. In particular, we derive
the constraints on the parameters of the commutator to yield Ro 6= 0, and Rico = 0.

Lemma 4.13 enables us to classify the triples in Hn
m. In Section 5.2, we carry out several

classifications in low dimensions. Thereby, we confirm the classification of homogeneous triples
in H1

0, which was initially stated in [DK95].

5.1 Four-dimensional Lorentzian Ricci-flat homogeneous triples

We investigate the geometry of the 4-dimensional homogeneous triples in H0
2,H1

1, and H2
0.

Discussion 5.1. H0
2 Let n be the 3-dimensional Lie algebra with basis 〈h, r1, r2〉 and commu-

tator tensor determined by

[, ]n =

h r1 r2

h 0 0 0

r1 0 0 −yh

r2 0 yh 0

for y ∈ R,

or equivalently,

[un, vn] =


 vh

vr




T

.


 0 0

0 Y


 .


 uh

ur


 h, for Y =


 0 y

−y 0




The Lie algebra of a homogeneous triple (g, h, L4) ∈ H0
2 is g = noδ R. The isotropy is h = {0}.

We consider derivations δ : n → n of the following form

δ =




x g1 g2

0 p1,1 p1,2

0 p2,1 p2,2


 with coefficients x, gi, pi,j ∈ R,

or equivalently,

δ =


 x gT

0 P


 , where g =


 g1

g2


 , P =


 p1,1 p1,2

p2,1 p2,2


 .

As derived in the previous chapter, the Jacobi identity requires xY = P T .Y + Y.P . Explicitly,
(

0 yx

−yx 0

)
=

(
−yp2,1 yp1,1

−yp2,2 yp1,2

)
+

(
yp2,1 yp2,2

−yp1,1 −yp1,2

)
=

(
0 y(p1,1 + p2,2)

−y(p1,1 + p2,2) 0

)
.
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The matrix equation reduces to the implication y 6= 0 ⇒ x = p1,1 + p2,2 . Keeping this relation
in mind, the commutator tensor on g compiles as

ad =

h r1 r2 z

h 0 0 0 −xh

r1 0 0 −yh −g1h− p1,1r1 − p2,1r2

r2 0 yh 0 −g2h− p1,2r1 − p2,2r2

z xh g1h + p1,1r1 + p2,1r2 g2h + p1,2r1 + p2,2r2 0

The algebra with y = 1, p1,2 = 1, p2,1 = −1 and all other coefficients zero is the oscillator
algebra.

The scalar product L4 is with respect to the basis g = m = 〈h, r1, r2, z〉 and induces the
geometry of the homogeneous triple. We apply the results of the previous chapter to obtain the
geometric tensors ν,Λ, Ro,Rico.

Adapting Lemma 4.4 to our situation gives the (1, 2)-tensor ν : g× g → g as

ν(un, vn) =


 vh

vr




T

.


 0 0

0 (P + P T )/2


 .


 uh

ur


h

ν(u, z) =




x/2 gT /2 0

0 −(Y + P T )/2 −g

0 0 −x


 .




uh

ur

uz




for all u, v ∈ g. To avoid fractions, we summarize these relations as

2ν =

h r1 r2 z

h 0 0 0 xh

r1 0 2p1,1h (p1,2 + p2,1)h g1h− p1,1r1 + (y − p1,2) r2

r2 0 (p1,2 + p2,1)h 2p2,2h g2h− (y + p2,1) r1 − p2,2r2

z xh g1h− p1,1r1 + (y − p1,2) r2 g2h− (y + p2,1) r1 − p2,2r2 −2xz − 2g1r1 − 2g2r2

Applying Lemma 4.6 yields the Levi-Civita connection Λ : g → gl(g) as

Λ(un) = P
((

0 (P + P T + Y )/2
)

.un

)
for all u ∈ g, and

Λ(z) =




x gT 0

0 (P − Y − PT )/2 −g

0 0 −x


 .

The matrices sum to

P + P T + Y = P − Y − P T =
 2p1,1 p1,2 + p2,1 + y

p1,2 + p2,1 − y 2p2,2





 0 p1,2 − y − p2,1

p2,1 + y − p2,1 0



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Definition 4.5 declares P, the purpose of which is to abbreviate matrices of special form. Ex-
plicitly, the Levi-Civita connection on basis elements of n is Λ(h) = 0,

2Λ(r1) = 2Λ(r2) =


0 2p1,1 p1,2 + p2,1 − y 0

0 0 0 −2p1,1

0 0 0 y − p1,2 − p2,1

0 0 0 0







0 p1,2 + p2,1 + y 2p2,2 0

0 0 0 −y − p1,2 − p2,1

0 0 0 −2p2,2

0 0 0 0




According to Corollary 4.11, the non-zero evaluations of the curvatures Ro : g × g → gl(g)
and Rico : g× g → R are determined by

Ro(u, z) = +
1
4
P ((

2(P + P T ).(P − xIm)− (P − Y − P T ).(Y + P + P T )− 2P T .Y
)
.ur

)

Rico(z, z) = −1
4

tr
(
2(P + P T ).(P − xIm) + Y.Y

)

for all u ∈ g. A straightforward computation yields

Ro(u, z) =
1
4
P





 c1 + c3 c2

c2 c1 − c3


 .ur




Rico(z, z) = −c1/2

with coefficients c1, c2, c3 as




c1 = −y2 + 2p1,1(p1,1 − x) + 2p2,2 (p2,2 − x) + (p1,2 + p2,1)
2

c2 = 2p1,1 (2p1,2 − y)− 2x (p1,2 + p2,1) + 2p2,2 (y + 2p2,1)

c3 = 2 (p1,1(p1,1 − x) + p2,2(x− p2,2) + (y − p1,2 + p2,1) (p1,2 + p2,1)) .

For convenience, we expand the curvature endomorphisms Ro(u, z) = 1
4P . . . on basis elements

Ro(r1, z) =
1
4




0 c1 + c3 c2 0

0 0 0 −c1 − c3

0 0 0 −c2

0 0 0 0




, Ro(r2, z) =
1
4




0 c2 c1 − c3 0

0 0 0 −c2

0 0 0 c3 − c1

0 0 0 0




.

The curvature identities (1.6) imply Ro(z, r1) = −Ro(r1, z), and Ro(z, r2) = −Ro(r2, z). All
other combinations of basis elements u, v ∈ {h, r1, r2, z} yield Ro(u, v) = 0.

However, if y 6= 0 we have to substitute x = p1,1 + p2,2 due to the Jacobi identity. Then,
the entries of the curvature tensor simplify to





c1 = −y2 + (p1,2 + p2,1)
2 − 4p1,1p2,2

c2 = 2 (y − p1,2 + p2,1) (p2,2 − p1,1)

c3 = 2 (y − p1,2 + p2,1) (p1,2 + p2,1) .
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Otherwise y = 0 , so that





c1 = 2p1,1(p1,1 − x) + 2p2,2 (p2,2 − x) + (p1,2 + p2,1)
2

c2 = 2 (2p1,1 − x) p1,2 + 2 (2p2,2 − x) p2,1

c3 = 2
(
p1,1(p1,1 − x) + p2,2(x− p2,2)− p2

1,2 + p2
2,1

)
.

Relative to the basis m = 〈h, q1, r1, z〉, Rico is the following bilinear form

Rico(u, v) = vT .




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −c1/2




.u for all u, v ∈ m.

In any case, the equation Rico = 0 ⇔ Rico(z, z) ⇔ c1 = 0 reduces to a quadratic homogeneous
polynomial in the coefficients of the commutator. 3

We conjecture, that the previous discussion covers all 4-dimensional Lie algebras with scalar
product of index 1, and curvature Ro 6= 0,Rico = 0.

Discussion 5.2. H1
1 The Lie algebra of a homogeneous triple in H1

1 is g = he1 × R oδ R
with basis 〈p1, h, q1, r1, z〉. The distinguished Lie subalgebra is h = 〈p1〉. The derivation δ on
n = he1 × R is of the form

δ =




0 0 s 0

0 x 0 g

1 0 x 0

0 0 n p




, n, g, x, p, s ∈ R. (5.1)

The Lorentzian scalar product is L4 with respect to m = 〈h, q1, r1, z〉. The scalar product
induces the following geometric tensors. According to Lemma 4.8, the non-zero evaluations of
the Riemannian curvature Ro : m×m → gl(m) are determined by

Ro(u, z) =
1
4
P





 cq,q cq,r

cr,q cr,r


 .


 uq

ur





 for all u ∈ m,

where

cq,q = 4s + 3nn =4s + 3n2

cr,r = 2(p + p)(p− x) + (p− p)(p + p)− nn =4p(p− x)− n2

cq,r = n(3p + p)− 2xn =2n(2p− x)

cr,q = cq,r =2n(2p− x).
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Therefore, the essential instances of Ro are

Ro(q1, z) =
1
4




0 cq,q cr,q 0

0 0 0 −cq,q

0 0 0 −cr,q

0 0 0 0




, and Ro(r1, z) =
1
4




0 cq,r cr,r 0

0 0 0 −cq,r

0 0 0 −cr,r

0 0 0 0




.

Lemma 4.9 provides the Ricci tensor on m. The non-zero evaluations of Rico : m × m → R are
determined by

Rico(z, z) = −1
4

(4s + 3nn + 2(p + p)(p− x)− nn) = −s + p(x− p)− n2/2. (5.2)

Relative to the basis m = 〈h, q1, r1, z〉, Rico is the following bilinear form

Rico(u, v) = vT .




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −s + p(x− p)− n2/2




.u for all u, v ∈ m.

Thus, Rico = 0 ⇔ s = p(x− p)− n2/2 . Substituting the value for s leaves the Riemannian
curvature Ro as

Ro(u, z) =
1
4
P





 4p(x− p) + n2 2n(2p− x)

2n(2p− x) 4p(p− x)− n2


 .


 uq

ur





 for all u ∈ m. (5.3)

We investigate when the homogeneous triple is moreover Riemannian-flat. From the expression
(5.3) we immediately obtain

Ro = 0 ⇔ 2n(2p− x) = 0 ∧ n2 + 4p(x− p) = 0.

Assume n 6= 0. Then, Ro = 0 requires x = 2p, but the second equation n2 = −4p(x− p) = −4p2

has no real solutions for p. Hence, Ro = 0 requires n = 0. But then p = 0 ∨ x = p is necessary
and sufficient. Thus, we simplify the equivalence to

Ro = 0 ⇔ n = 0 ∧ (p = 0 ∨ x = p).

3

Example 5.3. In [Ko01] p.69 and p.72, the homogeneous pairs with index 1.41.12 and index
1.41.23 are defined as (g, h) with Lie algebra g = he1 × R oδi R and subalgebra h = 〈p1〉 for
i = 12, 23. The derivations δ12 and δ23 are stated below.

δ12 = δ̆12 = δ23 = δ̆23 =


0 0 r 0

0 1 0 −1

1 0 1 0

0 0 0 1







0 0 r
a 0

0 1√
a

0 − 1√
b

1 0 1√
a

0

0 0 0 1√
a







0 0 0 0

0 0 0 −1

1 0 0 0

0 0 0 0







0 0 0 0

0 0 0 − 1√
b

1 0 0 0

0 0 0 0



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Figure 5.1 : The illustration concerns the triples in H1
1 as presented in Discussion 5.2. We set

s = p(x − p) − n2/2 for Rico = 0. Then, Ro depends only on the coefficients n, x, p ∈ R. The
two lines represent n = 0∧ (p = 0∨x = p), which is equivalent to Ro = 0. The surface visualizes
the kernel of the bilinear form s = p(x− p)− n2/2 = 0, which corresponds to [h, m] = {0}.

As part of the solution to the Einstein-Maxwell equation, the ρ-invariant Lorentzian scalar
product on m = 〈h, q1, q2, z〉 is given by B in (3.5) with coefficients a, b > 0. Lemma 3.10 proves
that the homogeneous triples (g, h, B) are isomorphic to H1

1(δ̆i) with δ̆12, δ̆23 as stated above.
We have seen in the previous discussion, how the coefficients of the derivation relate to the

curvature of the homogeneous triple. We transcribe the values in δ̆12, δ̆23 into the notation we
are familiar with.

x p g n s −s + p(x− p)− n2/2 4s + 3n2 4p(x− p) + n2 2n(2p− x)

δ̆12
1√
a

1√
a

− 1√
b

0 r
a − r

a 4 r
a 0 0

δ̆23 0 0 − 1√
b

0 0 0 0 0 0

The space 1.4.1.23 is Riemannian-flat. Concerning space 1.4.1.12, we have Rico = 0 if r = 0, but
then also Ro = 0. 3

Discussion 5.4. H2
0 We investigate the geometry of the homogeneous triples in H2

0. Let n be
the Lie algebra with basis 〈p1, p2, h, q1, q2〉 and commutator

[, ]n =

p1 p2 h q1 q2

p1 0 0 0 h 0

p2 0 0 0 0 h

h 0 0 0 0 0

q1 −h 0 0 0 −yh

q2 0 −h 0 yh 0

for y ∈ R,
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Equivalently,

[un, vn] =




vp

vh

vq




T

.




0 0 −In

0 0 0

In 0 Z


 .




up

uh

uq


h for Z =


 0 y

−y 0


 .

The Lie algebra of a homogeneous triple (g, h, L4) ∈ H2
0 is g = noδR with basis 〈p1, p2, h, q1, q2, z〉.

The isotropy is h = 〈p1, p2〉. We consider derivations δ on n of the form

δ =




0 0 0 s1 + y2/4 s2 − xy/2

0 0 0 s2 + xy/2 s3 + y2/4

0 0 x 0 0

1 0 0 x y

0 1 0 −y x




, s1, s2, s3 ∈ R,

or equivalently,

δ =




0 0 S − xZ/2

0 x 0

I2 0 xI2 + Z


 , where S =


 s1 + y2/4 s2

s2 s3 + y2/4


 .

With 3 degrees of freedom, S represents in fact an arbitrary symmetric matrix. The Lorentzian
scalar product is L4 with respect to m = 〈h, q1, q2, z〉. The scalar product induces the following
geometric tensors. According to Corollary 4.12, the non-zero evaluations of Ro : m×m → gl(m)
and Rico : m×m → R are determined by

Ro(u, z) = +P ((S + Z.Z/4) .uq) = P




 s1 s2

s2 s3


 .uq




Rico(z, z) = − tr (S + Z.Z/4) = −s1 − s3

for all u ∈ m. We observe Rico = 0 ⇔ s3 = −s1 , whilst the parameters x, y, s2 ∈ R are free to
choose. The homogeneous triple is Riemannian-flat if s1, s2, s3 = 0. 3

5.2 Classifications in low dimensions

Recall the definition of the linear mappings Th(λ), Tq(Q), T r(R), T z(η) in Table 4.1. Through-
out this section, we assume that these four types generate all isomorphisms between homoge-
neous triples in Hn

m. That is, we assume the moduli space is

Mn
m = Hn

m

/
isomorphy = Hn

m

/〈
Th(R∗), Tq(O(Rn)), T r (O(Rm)) , T z(Rm)

〉
.

We derive M0
0,M0

1, and M1
0 below, which covers the 2- and 3-dimensional triples of type Hn

m.
For greater values n,m we restrict the classification to homogeneous triples in Hn

m that are
moreover Ricci-flat. We define

Ṁn
m = {τ ∈ Hn

m : τ is Ricci-flat} /isomorphy.

In particular, we give parametrizations of the moduli spaces Ṁ1
1, and Ṁ2

0.
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Example 5.5. M0
0 A homogeneous triple (g, h, L2) = H0

0(δ) has Lie algebra g = Roδ R, and
isotropy h = {0}. The derivation is determined by a constant x ∈ R. δ : R→ R maps h 7→ xh.
In matrix form, δ = (x). We display the commutator tensor ad as

ad =

h z

h 0 −xh

z xh 0

. We define ad0 =

h z

h 0 0

z 0 0

, and ad1 =

h z

h 0 −h

z h 0

.

If x = 0 the triple (g, h, L2) is H0
0((0)) with commutator ad0. If x 6= 0 the triple H0

0((x)) is
isomorphic to H0

0((1)) with commutator ad1. According to Lemma 4.13, the isomorphism is
given by α = Th(x) =

(
x 0
0 1/x

)
. Thus, the moduli space M0

0 is a set with two points

M0
0 ' {H0

0(δ) : δ = (x) with x ∈ {0, 1}}.

Any homogeneous triple in H0
0 is isomorphic to H0

0(δ) with exactly one derivation from the set
δ ∈ {

(0), (1)}. In the classification of low dimensional semi-Riemannian homogeneous triples
given by B. Doubrov and B. Komrakov, H0

0((0)) corresponds to the space 1.2, while H0
0((1))

corresponds to 2.3, [DK95] p.5. 3

3-dimensional homogeneous triples

The following result is on certain 3-dimensional Lie algebras g with Lorentzian scalar product.
The classification is not covered by [DK95], since for 3-dimensional triples (g, h, B), the authors
restrict to isotropy with dim h ≥ 1.

Lemma 5.6. M0
1 Any homogeneous triple in H0

1 is isomorphic to H0
1(δ) with exactly one

derivation from the set

δ ∈





 0 ε

0 0


 ,


 0 0

0 1


 ,


 1 g

0 1


 ,


 1 0

0 p


 : ε ∈ {0, 1}, g ≥ 0, p 6= 1



 'M0

1. (5.4)

Proof. Recall Definition 4.1. A homogeneous triple (g, h, L3) ∈ H0
1 consists of the semi-direct

product g = R2oδR, and isotropy h = {0}. The derivation δ : R2 → R2 is defined by the matrix
δ =

( x g
0 p

)
, for x, p, g ∈ R.

If x 6= p, transformation of the Lie algebra by T z( g
p−x) : g → g shows that H0

1(δ) and
H0

1

((
x 0
0 p

))
are isomorphic. In this case, g = 0 is not a restriction. If x = p, we may still

assume g ≥ 0, since H0
1 (( x g

0 x )) and H0
1

((
x −g
0 x

))
are isomorphic by T r((−1)). As in the previous

example, we apply the mapping Th to scale the first non-zero element in the sequence x, p, g to
1. Overall, we obtain the parametrization of derivations in (5.4), which is one-to-one with all
pairwise non-isomorphic homogeneous triples in H0

1.

Another set of derivations that parametrizes M0
1 is

δ ∈





 x ε

0 x


 ,


 0 0

0 1


 ,


 1 0

0 p


 : ε ∈ {0, 1}, x ≥ 0, p 6= 1



 'M0

1.
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Figure 5.2 : The tree-like structures minute the reduction process of the coefficients x, p, g, s of
the derivations. The bold letters h, r, z abbreviate the isomorphisms Th, T r, T z.

Next, we confirm the classification of 3-dimensional Lorentzian homogeneous triples of the
form (he1 oδ R, 〈p1〉 , B) that is stated in [DK95]. Their results are reproduced in Example 2.2.
We proceed in the following way: In the following lemma, we derive our own classification. The
proof shows that without loss of generality B = L3. Thus the classification reduces to determine
M1

0. We conclude by matching both classifications.

Lemma 5.7. M1
0 Any Lorentzian homogeneous triple of the form (he1 oδ R, 〈p1〉 , B) is iso-

morphic to H1
0(δ̃) with exactly one derivation from the set

δ̃ ∈








0 0 ε

0 0 0

1 0 0


 ,




0 0 s

0 1 0

1 0 1


 : ε ∈ {0,−1, 1}, s ∈ R




'M1

0. (5.5)

Proof. In Section 4.1, we have derived the degrees of freedom of a linear mapping δ : he1 → he1

that is also a derivation. We may assume

δ =




0 0 s

0 x 0

1 0 x


 for x, s ∈ R. A priori B =




0 0 a

0 a 0

a 0 b


 with a, b ∈ R, a > 0.

(5.6)
To see that B covers all ρ-invariant Lorentzian scalar products on m, we yield the isotropy
representation ρ : h → gl(m). The commutator relations

[p1, h] = 0

[p1, q1] = h

[p1, z] = −δ(p1) = −q1





define ρ : h → gl(m) as ρ(p1) =




0 1 0

0 0 −1

0 0 0


 .

The ρ-invariance condition ρ(p1)T .A + A.ρ(p1) = 0 of a (0, 2)-tensor A : m×m → R on m shows
that there are 2 degrees of freedom in A, if A is moreover symmetric. The general setup results
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in

A = ρ(p1)T .A = A.ρ(p1) = ρ(p1)T .A + A.ρ(p1) =


c1 c2 c3

c2 c4 c5

c3 c5 c6







0 0 0

c1 c2 c3

−c2 −c4 −c5







0 c1 −c2

0 c2 −c4

0 c3 −c5







0 c1 −c2

c1 2c2 c3 − c4

−c2 c3 − c4 −2c5




for coefficients ci ∈ R. The ρ-invariance implies c1, c2, c5 = 0, and c3 = c4. Taking a = c3 and
b = c6 gives the scalar product B in (5.6). The determinant of B is det B = −a3, thus B is
Lorentzian if a > 0.

In the spirit of Remark 1.9, we are looking for a Lie algebra isomorphism α : g → g such
that the diagram

L3 : m × m → R

↓ αm ↓ αm ↑ Id

B : m × m → R

commutes. We may chose α : g → g defined by

α =




1√
a

0

0 αm


 with αm =




1
a 0 − b

2a

0 1√
a

0

0 0 1


 .

In matrix notation, we easily confirm L3 = αT
m.B.αm. A straightforward computation alike the

proof of Lemma 3.10 shows further, that the commutator of g

ad =

p1 h q1 z

p1 0 0 h −q1

h 0 0 0 −xh

q1 −h 0 0 −sp1 − xq1

z q1 xh sp1 + xq1 0

, x, s ∈ R

is stable under the transformation α : g → g.
So far, we have reasoned that it is not a restriction to assume B = L3. Consequently, the

classification of Lorentzian homogeneous triples of the form (he1oδR, 〈p1〉 , B) is one-to-one with
M1

0, which we are to obtain in the sequel.
According to Lemma 4.13, H1

0(δ) is isomorphic to H1
0(δ̄) with derivation as

δ̄ =




0 0 s/λ2

0 x/λ 0

1 0 x/λ


 . (5.7)

The isomorphism is given by Th(λ) with λ ∈ R∗. If x = 0, s 6= 0 we substitute λ =
√
|s| in

(5.7). If x 6= 0 we substitute λ = x. Overall, we obtain the parametrization of derivations in
(5.5), which is one-to-one with all pairwise non-isomorphic homogeneous triples in H1

0.
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Figure 5.3 : We are interested in the classification of the homogeneous triples of type (he1 oδ

R, 〈p1〉 , L3). The graphs visualize the two different parametrizations of pairwise non-isomorphic
homogeneous triples, which we compare in Corollary 5.8.

The authors of [DK95] classify all 3-dimensional semi-Riemannian homogeneous triples (g, h, B)
with dim h ≥ 1. Unfortunately, the list of triples in the paper does not come with a proof. The 3-
dimensional Lorentzian homogeneous triples with Lie algebra g = he1oδR and isotropy h = 〈p1〉
is a small excerpt of the list, which we have reproduced in Example 2.2.

Corollary 5.8. There is a one-to-one correspondence between the Lorentzian homogeneous
triples H1

0(δ) listed in [DK95] and the triples H1
0(δ̃) with derivation δ̃ from (5.5).

Proof. We have two different sets of derivations at hand, which – provided correct – characterize
all pairwise non-isomorphic Lorentzian homogeneous triples of the form (he1 oδ R, 〈p1〉 , B).
Consequently, we are looking for a bijection, which couples the derivations of both sets. Applying
the Lie algebra isomorphism Th(λ) for appropriate values λ ∈ R∗ does the job. The matching
process is documented in Table 5.1.

4-dimensional homogeneous triples

Subsequently, we restrict the classification to homogeneous triples in Hn
m that are Ricci-flat. For

that purpose, we define the moduli space

Ṁn
m = {τ ∈ Hn

m : τ is Ricci-flat} /isomorphy.

Since dimm = 2+n+m, the 4-dimensional instances are Ṁ0
2,Ṁ1

1,Ṁ2
0. We derive only the two

latter. To derive Ṁ0
2, there are 8 coefficients to consider.

Lemma 5.9. Ṁ1
1 Any Ricci-flat triple inH1

1 is isomorphic toH1
1(δ) with exactly one derivation

from the set

δ ∈








0 0 p(x− p)− n2/2 0

0 x 0 g

1 0 x 0

0 0 n p




: (x, p, g, n) ∈
⋃





{(0, 0, 0, ε) : ε ∈ {0, 1}}
{0} × {0} × {1} × R+

0

{0} × {1} × {0} × R+
0

{1} × {1} × R+
0 × R+

0

{1} × R\1× {0} × R+
0









(5.8)
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Table 5.1 : Bijective transcription of the derivations from Example 2.2 into the format of Lemma
5.7. The sets in the rightmost column are disjoint. Their union is ({0}×{−1, 0, 1}) ⋃

({1}×R),
which is literally the parametrization of derivations in (5.5).

Index δ λ δ̃ (x, s) ∈

3.1




0 0 0

0 0 0

1 0 0







0 0 0

0 0 0

1 0 0


 {(0, 0)}

3.3




0 0 −1

0 2 0

1 0 2


 2




0 0 −1
4

0 1 0

1 0 1


 {(1, −1

4 )}

3.4 α = −1




0 0 1

0 0 0

1 0 0







0 0 1

0 0 0

1 0 0


 {(0, 1)}

3.4 −1 < α < 1




0 0 −α

0 α + 1 0

1 0 α + 1


 α + 1




0 0 − α
(α+1)2

0 1 0

1 0 1


 {1} × (−1

4 ,∞)

3.5 α = 0




0 0 −1

0 0 0

1 0 0







0 0 −1

0 0 0

1 0 0


 {(0,−1)}

3.5 0 < α




0 0 −α2 − 1

0 2α 0

1 0 2α


 2α




0 0 −α2+1
4α2

0 1 0

1 0 1


 {1} × (−∞, −1

4 )

Proof. According to Definition 4.1, δ : he1 × R → he1 × R is of the general form

δ =




0 0 s 0

0 x 0 g

1 0 x 0

0 0 n p




, n, g, x, p, s ∈ R. (5.9)

In Discussion 5.2, we have derived the equivalence Rico = 0 ⇔ s = p(x− p)− n2/2 . The
orthogonal group on R is just O(R) = {(1), (−1)}. The commutator tensors and the Lorentzian
scalar product B = L4 are stable under these transformations, except for the coefficients of the
derivation δ on he1×R. Consider the effect of three particular transformations α : g → g on the
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Figure 5.4 : We depict the reduction process of the coefficients x, p, g, n, y, s in the classifications
that we perform in Lemma 5.9, and Lemma 5.10.

entries of the derivation:

α Tq((−1)).Th(−1) Tq((−1)).T r((−1)) Tq((−1))

diag(α) (1,−1,−1, 1,−1) (−1, 1,−1,−1, 1) (−1, 1,−1, 1, 1)

δ̆




0 0 s 0

0 −x 0 g

1 0 −x 0

0 0 n −p







0 0 s 0

0 x 0 −g

1 0 x 0

0 0 n p







0 0 s 0

0 x 0 g

1 0 x 0

0 0 −n p




Thus, to determine a set of pairwise non-isomorphic triples, we may narrow the discussion to
derivations with x, g, n ≥ 0 and x = 0 ⇒ p ≥ 0 . If x 6= p we transform the Lie algebra by

T z( g
p−x), which gives the rule x 6= p ⇒ g = 0 . Finally, we apply Th(λ) : g → g with λ ∈ R∗,

so that the first non-zero element in the sequence x, p, g, n scales to 1. For instance, if x, p = 0,
but g > 0, we choose the transformation Th(

√
g).

Overall, we obtain the parametrization of derivations in (5.8), which is one-to-one with all
pairwise non-isomorphic homogeneous triples in H1

1.

Lemma 5.10. Ṁ2
0 Any Ricci-flat triple in H2

0 is isomorphic to H2
0(δ) with exactly one deriva-

tion from the set

δ ∈








0 0 0 s + y2/4 −xy/2

0 0 0 xy/2 y2/4− s

0 0 x 0 0

1 0 0 x y

0 1 0 −y x




: (x, y, s) ∈
⋃





{(0, 0, ε) : ε ∈ {0, 1}}
{0} × {1} × R+

0

{1} × R+
0 × R+

0









(5.10)
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Proof. Generally, we consider derivations δ : he2 → he2 of the form

δ =




S − xZ/2

x

I2 xI2 + Z


 , where Z =


 0 y

−y 0


 , and S symmetric. (5.11)

In Discussion 5.4, we derive the relation trS + Z2/4 = 0 to yield Rico = 0. Since Z2/4 =
−diag(y2, y2)/4, we choose S to be of the general form

S =


 s1 + y2/4 s2

s2 y2/4− s1


 , s1, s2 ∈ R. Let Q =


 cos t/2 sin t/2

− sin t/2 cos t/2


 .

By transformation with Tq(Q) : g → g, the triple H2
0(δ) is isomorphic to H2

0(δ̆) with

δ̆ =




QT .S.Q− xZ/2

x

I2 xI2 + Z


 .

Note, QT .Z.Q = Z. The matrix product QT .S.Q is

QT .S.Q =


 y2/4 + s1 cos t− s2 sin t s1 sin t + s2 cos t

s1 sin t + s2 cos t y2/4− s1 cos t + s2 sin t


 .

We choose t ∈ [π, π), so that 0 = s1 sin t + s2 cos t and s = s1 cos t − s2 sin t ≥ 0, and thereby
eliminate one degree of freedom. Henceforth, we assume the derivation δ is of the form (5.11),
where

S =


 s + y2/4 −xy/2

xy/2 y2/4− s


 , and s ≥ 0 .

The effects of two specific transformations α : g → g on the derivation reveal, that x, y ≥ 0 is
not a restriction. Note,

(−1 0
0 1

) ∈ O(R2).

α Id Tq
((−1 0

0 1

))
.Th(−1) Tq

((−1 0
0 1

))

diag (1, 1, 1, 1, 1, 1) (1,−1,−1,−1, 1,−1) (−1, 1, 1,−1, 1, 1)

δ̆




S − xZ/2

x

I2 xI2 + Z







S − (−x)Z/2

(−x)

I2 (−x)I2 + Z







S − x(−Z)/2

x

I2 xI2 + (−Z)




Finally, we apply Th(λ) : g → g with λ ∈ R∗, so that the first non-zero element in the sequence
x, y, s scales to 1. Overall, we obtain the parametrization of derivations in (5.10), which is
one-to-one with all pairwise non-isomorphic homogeneous triples in H2

0.

In [Ko01], B. Komrakov provides a list of pairwise non-isomorphic homogeneous pairs of
dimension 4 and dim h ≥ 1. The list extends in almost 80 pages. The classification of 4-
dimensional homogeneous triples would require an even more verbose exposition.



71

-3 -2 -1 1 2 3
t

-1

-0.5

0.5

1

Figure 5.5 : The graphs of s1 sin t + s2 cos t, and s1 cos t − s2 sin t. The black dot indicates the
value t ∈ [π, π), so that s1 sin t + s2 cos t = 0, and s1 cos t− s2 sin t ≥ 0. For the illustration, we
have chosen the constants s1 = 1

2 , s2 = 11
10 .

To state the next result, we assume the classification of 4-dimensional homogeneous pairs
in [Ko01] is correct. We classify all 4-dimensional homogeneous triples (g, h, B) with dim h ≥ 1
and the geometric properties

B has index 1 the scalar product B on m is Lorentzian

Ro 6= 0 not Riemannian-flat

Rico = 0 Ricci-flat





(5.12)

For that purpose, we define the moduli space

M̌n
m = {τ ∈ Hn

m : τ has geometry (5.12)} /isomorphy.

Corollary 5.11. M̌1
1,M̌2

0 Any 4-dimensional Lorentzian homogeneous triple (g, h, B) with
dim h ≥ 1 that is Ricci-flat and non-Riemannian-flat is isomorphic to either H1

1(δ1), or H2
0(δ2)

with exactly one derivation from the set

δ1 ∈








0 0 p(x− p)− n2/2 0

0 x 0 g

1 0 x 0

0 0 n p




: (x, p, g, n) ∈
⋃





{(0, 0, 0, 1)}
{0} × {0} × {1} × R+

{0} × {1} × {0} × R+
0

{1} × {1} × R+
0 × R+

{1} × {0} × {0} × R+

{1} × R\{0, 1} × {0} × R+
0









' M̌1
1

δ2 ∈








0 0 0 s + y2/4 −xy/2

0 0 0 xy/2 y2/4− s

0 0 x 0 0

1 0 0 x y

0 1 0 −y x




: (x, y, s) ∈
⋃





{(0, 0, 1)}
{0} × {1} × R+

{1} × R+
0 × R+









' M̌2
0

Proof. Let (g, h, B) be a 4-dimensional Lorentzian homogeneous triple with curvature Ro 6= 0,
and Rico = 0. According to Corollary 4.3, this triple is isomorphic to an element in either H1

1,
or H2

0. Thus, the classification of all such triples reduces to determine M̌1
1, and M̌2

0.
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Figure 5.6 : To obtain the moduli spaces M̌1
1 and M̌2

0, we simply remove Riemannian-flat spaces
from Ṁ1

1 and Ṁ2
0. The classification is carried out in Corollary 5.11.

The space Ṁn
m consists of all pairwise non-isomorphic homogeneous triples in Hn

m that are
Ricci-flat. So, M̌n

m is merely Ṁn
m with Riemannian-flat spaces removed.

Lemmas 5.9, 5.10 parametrize Ṁ1
1, Ṁ2

0 through the sets of derivations (5.8), (5.10). In
terms of the coefficients of the derivation, a triple H1

1(δ) with δ as in (5.8) is Riemannian-flat
if n = 0 ∧ (p = 0 ∨ x = p) . This is a result of Discussion 5.2. According to Discussion 5.4, a

triple H2
0(δ) with δ as in (5.10) is Riemannian-flat if s = 0 .

We remove the derivations from the sets (5.8), (5.10), which satisfy these criteria. This
establishes a one-to-one correspondence with M̌1

1, M̌2
0 and proves the claim.

5.3 Future work

The thesis has obvious shortcomings: There is a fool-proof method to construct a Lie group
with Lie algebra noδ R, where n is a nilpotent Lie algebra with basis so that δ : n → n is in real
Jordan normal form. Applying an appropriate basis transformation, any triple Hn

m(Y, δ) is of
this form. However, I do not know of a universal method to explicitly contruct a homogeneous
space with associated homogeneous triple Hn

m(Y, δ).
In [DK95], the parametrization of homogeneous triples in M1

0 is closely related to the Jordan
normal form of the derivation. This seems to be advantageous in order to formulate the left-
action of the corresponding homogeneous space. I yield new moduli spaces, for instance M̌1

1,M̌2
0,

in the most straight-forward way. That is, I neglect the Jordan normal form of the derivation.
However, I hope that the classifications serve as a good reference for future parametrizations of
these moduli spaces.

With my current state of knowledge, I am not able to report on the applications of Lorentzian
Ricci-flat homogeneous spaces to relativistic physics.
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Theses

Let us accentuate the major contributions of this thesis.

• Suppose the classification of 4-dimensional homogeneous pairs in [Ko01] is correct. Then,
Corollary 3.12 shows that any 4-dimensional Lorentzian homogeneous triple with isotropy
dim h ≥ 1, and curvature Ro 6= 0, Rico = 0 is isomorphic to (g, h, L4) with g = hen×RmoδR,
and h = 〈p1, . . . , pn〉 for either n = 1,m = 1, or n = 2, m = 0.

• We define a new class of Lorentzian homogeneous triples Hn
m in 4.1. The class incorporates

all homogeneous triples with geometry Ro 6= 0, Rico = 0 that are known to us. We indicate
the connection to previous work such as [CW70], and [FM05].

• The geometry of triples in Hn
m with m 6= 0 has not been published prior to this thesis. The

set of all triples of the form Hn
m(Y, δ) for fixed n, and m ≥ 2 is not a vector space. The

triples in H0
m have isotropy of dimension 0. In this case, the corresponding homogeneous

spaces are Lie groups with left-invariant metric.

• We present in detail the geometry of all 4-dimensional homogeneous triples that originate
from our construction Hn

m. We emphasize on the choice of parameters in Y, δ, such that
the curvature satisfies Ro 6= 0, Rico = 0. In particular, we yield instances of homogeneous
triples, which correspond to 4-dimensional Lie groups with left-invariant Lorentzian metric
of this geometry.

• Suppose the classification of 4-dimensional homogeneous pairs in [Ko01] is correct. Then,
Corollary 5.11 classifies the 4-dimensional Lorentzian homogeneous triples with isotropy
dim h ≥ 1, and curvature Ro 6= 0,Rico = 0.


